Abstract:
A defect inspecting apparatus is disclosed that can detect finer defects with high resolution optical images of those defects, and which makes the difference in contrast greater between fine line patterns of a semiconductor device. The defect inspecting apparatus includes a sample mounting device for mounting a sample; lighting and detecting apparatus for illuminating a patterned sample mounted on a mount and detecting the optical image of the reflected light obtained therefrom. Also included is a display for displaying the optical image detected by this lighting and detecting apparatus; an optical parameter setting device for setting and displaying optical parameters for the lighting and detecting apparatus on the display; and optical parameter adjusting apparatus for adjusting optical parameters set for the lighting and detecting apparatus according to the optical parameters set by the optical parameter setting apparatus; a storage device for storing comparative image data; and a defect detecting device for detecting defects from patterns formed on the sample by comparing the optical image detected by the optical image detecting apparatus with the comparative image data stored in the storage.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135° to 225°, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
The surface form of a semiconductor thin film such as a polysilicon film formed on a semiconductor substrate is measured through spectro-ellipsometry or measured by performing an IPA quantitative analysis through GC. Mass (gas chromatography) after exposing the semiconductor thin film to IPA (isopropyl alcohol) vapor and drying the semiconductor thin film. Through either of these methods, the surface form of the polysilicon film can be easily and quickly measured.
Abstract:
The invention concerns an optical measurement arrangement having an ellipsometer, in which an incident beam (16) of polarized light is directed at an angle of incidence &agr;≠0° onto a measurement location (M) on the surface of a specimen (P). Information concerning properties of the specimen (P), preferably concerning layer thicknesses and optical material properties such as refractive index n, extinction coefficient k, and the like, is obtained from an analysis of a return beam (17) reflected from the specimen (P). The incident beam (16) is directed by a mirror objective (15) onto the surface of the specimen (P). The return beam (17) is also captured by the mirror objective (15). The result is to create an optical measurement arrangement, operating on the ellipsometric principle, which has a simple, compact configuration and permits a high measurement accuracy down to the sub-nanometer range.
Abstract:
An optical measurement system is disclosed for evaluating samples with multi-layer thin film stacks. The optical measurement system includes a reference ellipsometer and one or more non-contact optical measurement devices. The reference ellipsometer is used to calibrate the other optical measurement devices. Once calibration is completed, the system can be used to analyze multi-layer thin film stacks. In particular, the reference ellipsometer provides a measurement which can be used to determine the total optical thickness of the stack. Using that information coupled with the measurements made by the other optical measurement devices, more accurate information about individual layers can be obtained.
Abstract:
In addition to having color, light waves have the attribute of polarization. An apparatus and method to convert circular polarized light into linearly polarized light over a wide range of wavelengths is provided by utilizing a first surface-relief grating functioning as a quarter-wave waveplate and a second surface-relief grating functioning as a half-wave waveplate. A plurality of such devices are arranged in a two-dimensional array and combined with an array of linear polarizers and an array of photodetectors to form a polarization imaging sensor. Such a sensor could have applications in automobiles to alert drivers of the presence of other vehicles, especially at night, in fog, or in rain. Military applications include the detection of vehicles placed among trees and shrubs. Another advantage of using circular polarization images is that the sign and magnitude of the circular polarization can potentially be used to reveal the spatial orientation, material, and surface roughness of the object's surface.
Abstract:
Source light of unknown polarization is input into a polarization controller. The polarization controller transforms the polarization of the source light to a plurality of different polarizations. The transformed source light output by the polarization controller is input to a fixed polarizer, which passes a maximal transmitted intensity of the transformed source light at a given transformation perpendicular to an axis of propagation of the source light. The polarizer passes a minimal transmitted intensity of the transformed source light at a transformation orthogonal to the transformation at which the maximal transmitted intensity is passed. The discriminated transformed source light output by the fixed polarizer is input to a light-wave power meter, which measures the intensity thereof. The maximal and minimal measured transmitted intensities of the discriminated transformed source light can be used to determine the DOP of the source light. In the alternative, Mueller calculus can be used to determine the degree of polarization when at least four polarization transformations are performed by the polarization controller and angles by which a half-wave plate and a quarter-wave plate of the polarization controller are rotated are known.
Abstract:
Disclosed are spectrophotometer, polarimeter, and ellipsometer systems which have multiple easily, sequentially, positionable detector systems therein mounted to allow easy positioning thereof, to for instance, allow sequential monitoring of ellipsometric and spectrophotometric signals, without removal of any detector system from the spectrophotometer, polarimeter, or ellipsometer system. Also disclosed are methods of use wherein-different detectors in a positionable multiple detector containing system are utilized during different electromagnetic beam detection steps.
Abstract:
A method for measuring sample retardance in the presence of spurious background retardance contributed by optical components such as strained lenses in the measurement system, which is accurate where there is a retardance in excess of 15 degrees in the sample, the background, or the combination thereof. The method can be applied to imaging systems that record polarized light intensities for obtaining retardance magnitude and angular orientation values at all points in a scene simultaneously. The system first takes images that record the apparent slow axis orientation and the apparent retardance of the sample at all image points. Then the sample is removed and images are taken that record the background retardance alone. Algorithms for minimizing the effect of the background retardance on the measured sample retardance make use of the separately measured polarized light intensities of sample with background and of the background alone. The algorithms can be applied to each picture element simultaneously and do not make use of spatial relationships or distributions within the sample.
Abstract:
In the present invention, measuring the one-dimensional or two-dimensional voltage distribution or electrical field distribution in a measured device is made possible, and a reduction in the measuring time can be implemented. The present invention comprises a first optical system (2, 3) wherein light emitted from the light source is shaped into a line-shaped light beam and irradiates a desired measurement line in the measured device via the electrooptic element, a second optical system (7, 8, 9) that maintains as-is the shape of the line-shaped light beam reflected from the desired measurement line in the measured device after transiting the electro-optic element, a light receiving device (10) that receives the line-shaped light beam emitted from the second optical system and converts each of the measured points to an electrical signal depending on the strength of each light beam reflected at each of the measured points on the desired measurement line on the measured device and outputs the result, and a signal processing device (11, 12, 13, 14, 16) that calculates the voltage or electrical field at each of the measured points of the measured device from the output signal of the light receiving device and calculates the electrical field distribution or the voltage distribution at the measured part of measured device.