Abstract:
A heat spreader for an emissive display device, such as a plasma display panel or a light emitting diode, comprising at least one sheet of compressed particles of exfoliated graphite having a surface area greater than the surface area of that part of a discharge cell facing the back surface of the device.
Abstract:
A display apparatus includes a display panel and a heat transfer sheet mounted adjacent to one surface of the display panel. A plurality of pores are formed in the heat transfer sheet. The heat transfer sheet may have an open cell-type structure and/or a closed cell-type structure. The open cell-type structure includes pores that are interconnected. The closed cell-type structure includes pores formed that are not in communication with each other, rather these pores may be independently formed.
Abstract:
A plasma display apparatus includes a heat radiation sheet that is easily attached and separated to and from a plasma display panel, has strengthened adherence with the plasma display panel and a chassis base, and does not generate a residual image. The plasma display apparatus includes a heat radiation sheet between a plasma display panel and a chassis base, and the heat radiation sheet is divided into two or more sheets, where the gap between the sheets is small enough so that a visible residual image does not appear.
Abstract:
Provided are designs for a plasma display module (PDM) that has a plasma display panel (PDP) and a chassis base with circuits mounted thereon. Heat dissipating layers and plane structures are formed between the PDP and the chassis base. The heat dissipating layer and the plane structure have novel shapes and sizes and are made out of specific materials or combinations of materials to improve the heat dissipating characteristics for the PDM. Preferably, a high-orientation graphite material having a high thermal conductivity is used for the heat dissipating layer. The plane structure is a highly conductive metal that is positioned between the graphite layer and the glass PDP to form a better contact to the PDP, to better draw heat away from the PDP and to allow for easy attachment and detachment of the graphite layer to the PDP.
Abstract:
In this screen manufacturing method, a method of effectively cooling flat display panels (1) which form a display screen is provided. A mechanism for cooling the flat display panels (1) is also provided. More specifically, in this manufacturing method, when a display screen (50) is assembled, clearances (41) are provided between modules (40) in which the flat display panels (1) are lined up to, thereby facilitate air circulation driven by a fan (42). Further, a radiation member is fitted to a holder which fixes the flat display panels (1). Thus, a surface area of the holder becomes larger by a portion equivalent to the radiation member, whereby radiative cooling is enhanced.
Abstract:
Apparatus and method for automatic control of with a high pressure mercury arc lamp is described. The apparatus includes a control unit that monitors the current and the voltage supplied to the arc lamp. A temperature measuring device is coupled to a portion of the lamp for monitoring the temperature. The control device controls a flow of air past the lamp by controlling the power to a fan motor or by controlling the flow of air by controllable dampers. After equilibrium conditions are established, the control unit determines and stores the equilibrium values of current and voltage. Thereafter the control unit monitors the values of current and voltage periodically. When these measured voltage and current values are outside of predetermined limits, the control unit initiates shut down operation of the lamp.
Abstract:
Convection air-cooling of a compact electric discharge lamp unit that is adapted for use as a screw-in energy-conserving substitute for an incandescent-type lamp bulb is enhanced by partitioning the lamp housing into two separate compartments and providing vents and connecting air passageways that direct ambient air through the respective housing compartments along two different paths--thereby cooling the compartments independently of one another. A light source (such as a convoluted low-pressure discharge lamp) is located within one of the compartments and an electrical circuit for energizing the lamp is located in the other compartment. The "segregated air-flow" mode of cooling prevents heat that is generated by the lamp from being introduced into the compartment that contains the electrical circuit and thus prevents the circuit components from becoming overheated and possibly damaged. This is an important advantage in the case of solid-state type electronic circuits that include components such as electrolytic capacitors and transistors or the like that are heat-sensitive and may fail if they become too hot. In a preferred embodiment the light source comprises a replaceable plug-in fluorescent lamp of triple-U-bent configuration that has a plastic base member with tongue-and-groove elements which permit the fluorescent lamp to be snap-locked into operative relationship with the partition and circuit components of the lamp housing.
Abstract:
A fluorescent lamp device according to the present invention includes a ballast, a screw base electrically connected to the ballast, a fluorescent tube curved in an arc at three portions thereof, a bowl-shaped member for housing the ballast with the screw base fixed projecting outside therefrom, a globe, and a partition plate attached to an open end of the member so as to thermally isolate or insulate the ballast from the fluorescent tube and to which the fluorescent tube is fixed. The bowl-shaped member is provided with a plurality of ventilating slits for discharging heat radiated from the ballast, and also with air-ducts for communicating the space inside the globe with the outside air. The globe is also provided with holes at the top portion thereof.