Abstract:
A salicide process is conducted to a thin film integrated circuit without worrying about damages to a glass substrate, and thus, high-speed operation of a circuit can be achieved. A base metal film, an oxide and a base insulating film are formed over a glass substrate. A TFT having a sidewall is formed over the base insulating film, and a metal film is formed to cover the TFT. Annealing is conducted by RTA or the like at such a temperature that does not cause shrinkage of the substrate, and a high-resistant metal silicide layer is formed in source and drain regions. After removing an unreacted metal film, laser irradiation is conducted for the second annealing; therefore a silicide reaction proceeds and the high-resistant metal silicide layer becomes a low-resistant metal silicide layer. In the second annealing, a base metal film absorbs and accumulates heat of the laser irradiation, and a semiconductor layer is supplied with heat of the base metal film in addition to heat of the laser irradiation, thereby enhancing efficiency of the silicide reaction in the source and drain regions.
Abstract:
To provide devices relating to a manufacturing method for a semiconductor device using a laser crystallization method, which is capable of reducing a cost involved in a design change, preventing a grain boundary from developing in a channel formation region of a TFT, and preventing a remarkable reduction in mobility of the TFT, a decrease in an ON current, and an increase in an OFF current due to the grain boundary and to a semiconductor device formed by using the manufacturing method. In a semiconductor device according to the present invention, among a plurality of TFTs formed on a base film, some TFTs are electrically connected to form logic elements. The plurality of logic elements are used to form a circuit. The base film has a plurality of projective portions having a rectangular or stripe shape. Island-like semiconductor films included in each of the plurality of TFTs are formed between the plurality of projective portions and also, are crystallized by a laser light scanned in a longitudinal direction of the projective portions.
Abstract:
It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.
Abstract:
An object of the present invention is to provide a semiconductor device formed by laser crystallization by which formation of grain boundaries in the TFT channel formation region can be avoided, and a method of manufacturing the same. Still another object of the present invention is to provide a method of designating the semiconductor device. The present invention relates to a semiconductor device with a plurality of cells each having a plurality of TFTs that have the same channel length direction, in which the plural cells form a plurality of columns along the channel length direction, in which an island-like semiconductor film of each of the plural TFTs is crystallized by laser light running in the channel length direction, in which a channel formation region of the island-like semiconductor film is placed on a depressive portion of a base film that has a rectangular or stripe pattern concave and convex with the channel length direction matching the longitudinal direction of the depressive portion, and in which a plurality of wires for electrically connecting the plural cells with one another are formed between the plural columns.
Abstract:
A method for manufacturing a semiconductor device having steps of forming an amorphous semiconductor on a substrate having an insulating surface; patterning the amorphous semiconductor to form plural first island-like semiconductors; irradiating a linearly condensed laser beam on the plural first island-like semiconductors while relatively scanning the substrate, thus crystallizing the plural first island-like semiconductors; patterning the plural first island-like semiconductors that have been crystallized to form plural second island-like semiconductors; forming plural transistors using the plural second island-like semiconductors; and forming a unit circuit using a predetermined number of the transistors, where the second island-like semiconductors used for the predetermined number of the transistors are formed from the first island-like semiconductors that are different from each other.
Abstract:
To provide devices relating to a manufacturing method for a semiconductor device using a laser crystallization method, which is capable of reducing a cost involved in a design change, preventing a grain boundary from developing in a channel formation region of a TFT, and preventing a remarkable reduction in mobility of the TFT, a decrease in an ON current, and an increase in an OFF current due to the grain boundary and to a semiconductor device formed by using the manufacturing method. In a semiconductor device according to the present invention, among a plurality of TFTs formed on a base film, some TFTs are electrically connected to form logic elements. The plurality of logic elements are used to form a circuit. The base film has a plurality of projective portions having a rectangular or stripe shape. Island-like semiconductor films included in each of the plurality of TFTs are formed between the plurality of projective portions and also, are crystallized by a laser light scanned in a longitudinal direction of the projective portions.
Abstract:
A gate insulating film of a TFT is formed without increasing a substrate temperature so that a substrate having a low heat resistance such as a plastic substrate can be used. Further, a structure in which an S value of the above TFT is improved and an off leak current is reduced is used to realize the improvement of reliability of a semiconductor device. In the case where the gate insulating film is formed, it is formed by sputtering so that a region having 0.4 atomic % to 1.6 atomic % is present at concentration measurement of hydrogen in the film by an HFS analysis (hydrogen forward scattering analysis). Then, an insulating film is formed thereon by sputtering so that a region having 0.2 atomic % or less is present at concentration measurement of hydrogen in the film by an HFS analysis. When a TFT is manufactured using such a structure of the gate insulating film, there are obtained TFT characteristics such that a subthreshold coefficient is low and a leak current flowing between a gate electrode and a source electrode or a leak current flowing between a gate electrode and a drain electrode is suppressed.
Abstract:
The invention is to provide a high-productivity method for fabricating a TFT device having different LDD structures on one and the same substrate, and the TFT device. Specifically, the invention provides a novel TFT structure, and a high-productivity method for fabricating it. A Ta film or a Ta-based film having good heat resistance is used for forming interconnections, and the interconnections are covered with a protective film. The interconnections can be subjected to heat treatment at high temperatures (400 to 700° C.), and, in addition, the protective film serves as an etching stopper. In the peripheral driving circuit portion in the device, TFTs having an LDD structure are disposed in a self-aligned process in which is used side walls 126 and 127; while in the pixel matrix portion therein, TFTs having an LDD structure are disposed in a non-self-aligned process in which is used an insulator 125.
Abstract:
The invention relates to a semiconductor device including an oxide semiconductor layer, a gate electrode overlapping with a channel formation region of the oxide semiconductor layer, and a source electrode or a drain electrode overlapping with a first region of the oxide semiconductor layer, and a second region between the channel formation region and the first region. An upper layer of the second region includes a microvoid. The microvoid is formed by adding nitrogen to the upper layer of the second region. Thus, upper layer of the second region contains lager amount of nitrogen than a lower layer of the second region.
Abstract:
It is an object to provide a semiconductor device in which a short-channel effect is suppressed and miniaturization is achieved, and a manufacturing method thereof. A trench is formed in an insulating layer and impurities are added to an oxide semiconductor film in contact with an upper end corner portion of the trench, whereby a source region and a drain region are formed. With the above structure, miniaturization can be achieved. Further, with the trench, a short-channel effect can be suppressed setting the depth of the trench as appropriate even when a distance between a source electrode layer and a drain electrode layer is shortened.