Abstract:
A displaying apparatus that includes a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements. A method of manufacturing a displaying apparatus that includes forming a plurality of electromechanical system elements arranged in rows. The electromechanical system elements of each of the rows are further arranged in subrows. The subrows of each row are electrically connected. Certain of the electromechanical system elements have a hysteresis stability window that is nested with another hysteresis stability window of certain others of the electromechanical system elements.
Abstract:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
Various embodiments include interferometric optical modulators comprising a substrate layer having a thickness between about 0.1 mm to about 0.45 mm thick and a method for manufacturing the same. The interferometric modulator can be integrated together with a diffuser in a display device. The thin substrate permits use of a thicker diffuser. The thinner substrate may increase resolution and reduce overall thickness of the interferometric modulator. The thicker diffuser may provide increased diffusion and durability.
Abstract:
An interferometric modulator is provided having a faster deformation time constant on actuation than relaxation time constant upon release from actuation. In some embodiments, apertures are formed in a mechanical membrane to decrease pressure, including liquid and/or gas pressures, on the membrane when actuated. In other embodiments, a dampening layer is disposed in close proximity above the membrane to apply greater downward pressure on the membrane and therefore slow the motion of the membrane when released from an actuated state. Other embodiments comprise structures, such as a heating element or vacuum device, to manipulate pressures above and/or below the mechanical membrane to affect the mechanical persistence of the display device.
Abstract:
An iterferometric modulator array is integrated with collapsible cavity MEMS electrical switches. The electrical switches may have similar physical geometry as the display elements. The switches may form row or column select functions for the display.
Abstract:
Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate includes a curved portion relative to the substrate. The curved portion is substantially throughout the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package.
Abstract:
A system and method for processing video data are disclosed. In one aspect, a method includes generating halftone data for a first video frame and generating halftone data for a second video frame. The method further includes, to reduce at least one visual artifact, selectively copying the halftone data for the first video frame into the halftone data for the second video frame, the selective copying being based upon a comparison between a predetermined fixed threshold and the difference in the human visual system model-based perceptual error of the originally generated halftone data for the second video frame and the human visual system model-based perceptual error of the halftone data for the second video frame after the copying is done.
Abstract:
A display having a plurality of reflective display elements. In one embodiment, the display elements comprise at least one electrode having a plurality of active areas. In one embodiment, at least two of the sizes of the active areas are different with respect to each other, e.g., they are non-uniform in size. The interferometric modulators have a plurality of states, wherein selected ones of the interferometric modulators are configured to be actuated depending differing electrostatic forces in the interferometric modulators. The electrostatic forces in the interferometric modulators are different at least in part due to variations in the sizes of the active areas of the electrodes.