GENERATING DATA INSIGHTS
    81.
    发明申请

    公开(公告)号:US20240403313A1

    公开(公告)日:2024-12-05

    申请号:US18328980

    申请日:2023-06-05

    Applicant: ADOBE INC.

    Abstract: Systems and methods for data analysis are described. Embodiments of the present disclosure data analysis include displaying, via a data analysis interface, a data visualization in a first region of the data analysis interface; and displaying, via the data analysis interface, an analysis thread visualization in a second region of the data analysis interface. The analysis thread visualization depicts an analysis thread graph including a first node corresponding to the data visualization and an edge corresponding to an analysis path between the first node and a second node.

    GENERATING EDITABLE EMAIL COMPONENTS UTILIZING A CONSTRAINT-BASED KNOWLEDGE REPRESENTATION

    公开(公告)号:US20240163238A1

    公开(公告)日:2024-05-16

    申请号:US18055238

    申请日:2022-11-14

    Applicant: Adobe Inc.

    CPC classification number: H04L51/07 G06F3/04842

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generates editable email components by utilizing an Answer Set Programming (ASP) model with hard and soft constraints. For instance, in one or more embodiments, the disclosed systems generate editable email components from email fragments of an email file utilizing an Answer Set Programming (ASP) model. In particular, the disclosed systems extract facts for the ASP model from the email file. In addition, the disclosed systems determine rows or columns defining cells of the email file utilizing ASP hard constraints defined by a first set of ASP atoms corresponding to the facts. Moreover, the disclosed systems determine editable email component classes for the email fragments utilizing ASP soft constraints defined by ASP classification weights and a second set of ASP atoms corresponding to the facts.

    Latent network summarization
    83.
    发明授权

    公开(公告)号:US11860675B2

    公开(公告)日:2024-01-02

    申请号:US17373281

    申请日:2021-07-12

    Applicant: ADOBE INC.

    Abstract: Embodiments of the present invention provide systems, methods, and computer storage media for latent summarization of a graph. Structural features can be captured from feature vectors associated with each node of the graph by applying base functions on the feature vectors and iteratively applying relational operators to successive feature matrices to derive deeper inductive relational functions that capture higher-order structural information in different subgraphs of increasing size (node separations). Heterogeneity can be summarized by performing capturing features in appropriate subgraphs (e.g., node-centric neighborhoods associated with each node type, edge direction, and/or edge type). Binning and/or dimensionality reduction can be applied to the resulting feature matrices. The resulting set of relational functions and multi-level feature matrices can form a latent summary that can be used to perform a variety of graph-based tasks, including node classification, node clustering, link prediction, entity resolution, anomaly and event detection, and inductive learning tasks.

    SYSTEM AND METHODS FOR PROVIDING INVISIBLE AUGMENTED REALITY MARKERS

    公开(公告)号:US20230386143A1

    公开(公告)日:2023-11-30

    申请号:US17664972

    申请日:2022-05-25

    Applicant: ADOBE INC.

    Abstract: A system and methods for providing human-invisible AR markers is described. One aspect of the system and methods includes identifying AR metadata associated with an object in an image; generating AR marker image data based on the AR metadata; generating a first variant of the image by adding the AR marker image data to the image; generating a second variant of the image by subtracting the AR marker image data from the image; and displaying the first variant and the second variant of the image alternately at a display frequency to produce a display of the image, wherein the AR marker image data is invisible to a human vision system in the display of the image.

    Personalized visualization recommendation system

    公开(公告)号:US11720590B2

    公开(公告)日:2023-08-08

    申请号:US17091941

    申请日:2020-11-06

    Applicant: ADOBE INC.

    Abstract: Systems and methods for personalized visualization recommendation are described. Embodiments of the described systems and methods are configured to identify a first matrix representing user interactions with a plurality of data attributes corresponding to a plurality of datasets, a second matrix representing user interactions with a plurality of visualizations, and a third matrix representing a plurality of meta-features for each of the data attributes; compute low-dimensional embeddings representing user characteristics, the data attributes, visualization configurations, and the meta-features using joint factorization of the first matrix, the second matrix and the third matrix; generate a model for predicting visualization preference weights based on the low-dimensional embeddings; predict the visualization preference weights for a user corresponding to a plurality of candidate visualizations of dataset using the model; and generate a personalized visualization of the dataset for the user based on the predicted visualization preference weights.

    Temporal-based network embedding and prediction

    公开(公告)号:US11621892B2

    公开(公告)日:2023-04-04

    申请号:US17095070

    申请日:2020-11-11

    Applicant: Adobe Inc.

    Abstract: Deriving network embeddings that represent attributes of, and relationships between, different nodes in a network while preserving network data temporal and structural properties is described. A network representation system generates a plurality of graph time-series representations of network data that each includes a subset of nodes and edges included in a time segment of the network data, constrained either by time or a number of edges included in the representation. A temporal graph of the network data is generated by implementing a temporal model that incorporates temporal dependencies into the graph time-series representations. From the temporal graph, network embeddings for the network data are derived, where the network embeddings capture temporal dependencies between nodes, as indicated by connecting edges, as well as temporal structural properties of the network data. Network embeddings represent network data in a low-dimensional latent space, which is useable to generate a prediction regarding the network data.

    Generating visual data stories
    90.
    发明授权

    公开(公告)号:US11562019B2

    公开(公告)日:2023-01-24

    申请号:US17161406

    申请日:2021-01-28

    Applicant: Adobe Inc.

    Abstract: This disclosure describes one or more embodiments of systems, non-transitory computer-readable media, and methods that intelligently and automatically analyze input data and generate visual data stories depicting graphical visualizations from data insights determined from the input data. For example, the disclosed systems automatically extract data insights utilizing an in-depth statistical analysis of dataset groups from data-attribute categories within the input data. Based on the data insights, the disclosed systems can automatically generate exportable visual data stories to visualize the data insights, provide textual or audio-based natural language summaries of the data insights, and animate such data insights in videos. In some embodiments, the disclosed systems generate a visual-data-story graph comprising nodes representing visual data stories and edges representing similarities between the visual data stories. Based on the visual-data-story graph, the disclosed systems can select a relevant visual data story to display on a graphical user interface.

Patent Agency Ranking