Abstract:
Described here are devices and methods for crimping self-expanding devices. The crimping devices may be useful for crimping a variety of different self-expanding devices (whether such devices are biodegradable or bio-durable). The crimping devices may have crimping members to engage the self-expanding device to reduce the device from an expanding configuration to an unexpanded configuration. The crimping member may comprise or include a suture, wire, ribbon, guiding hoop, pusher, prong, holding bar, balloon, jaws, combinations thereof, or the like. The crimping devices may also include or comprise a holding structure to hold the self-expanding device in an unexpanded or expanded configuration.
Abstract:
Methods to expand polymer tubing with desirable or optimum morphology and mechanical properties for stent manufacture and fabrication of a stent therefrom are disclosed.
Abstract:
Disclosed is a method of treating a bodily lumen with a stent, the method comprising: disposing a stent within a bodily lumen, the stent comprising a plurality of deformable struts that are substantially circumferentially aligned and are configured to selectively deform in a circumferential direction in localized regions in the struts upon application of an outward radial force; and expanding the stent by applying the outward radial force, wherein the outward radial force causes selective deformation of the deformable struts in a localized region in the struts.
Abstract:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.
Abstract:
A method of fabricating an implantable medical device that includes deforming and heating setting a polymer construct, for use in fabricating the device, in a temperature range in which the crystal nucleation rate is greater than the crystal growth rate is disclosed.