ETHER-BASED ELECTROLYTE SYSTEM IMPROVING OR SUPPORTING ANODIC STABILITY OF ELECTROCHEMICAL CELLS HAVING LITHIUM-CONTAINING ANODES

    公开(公告)号:US20190058211A1

    公开(公告)日:2019-02-21

    申请号:US15677249

    申请日:2017-08-15

    Inventor: Li Yang Mei Cai

    Abstract: A highly-concentrated electrolyte system for an electrochemical cell is provided, along with methods of making the highly-concentrated electrolyte system. The electrolyte system includes a bound moiety having an ionization potential greater than an electron affinity and comprising one or more salts selected from the group consisting of: lithium bis(fluorosulfonyl)imide (LiFSI), sodium bis(fluorosulfonyl)imide (NaFSI), potassium bis(fluorosulfonyl)imide (KFSI), and combinations thereof bound to a solvent comprising dimethoxyethane (DME). The one or more salts have a concentration in the electrolyte system of greater than about 4M, and a molar ratio of the one or more salts to the dimethoxyethane (DME) is greater than or equal to about 1 to less than or equal to about 1.5. The one or more salts binds to the dimethoxyethane (DME) causing the electrolyte system to be substantially free of unbound dimethoxyethane (DME) and unbound bis(fluorosulfonyl)imide (FSI−).

    LITHIUM METAL BATTERY WITH HYBRID ELECTROLYTE SYSTEM

    公开(公告)号:US20190058210A1

    公开(公告)日:2019-02-21

    申请号:US15677760

    申请日:2017-08-15

    Abstract: An electrochemical cell includes a negative electrode that contains lithium and an electrolyte system. In one variation, the electrolyte system includes a first liquid electrolyte, a solid-dendrite-blocking layer, and an interface layer. The solid dendrite-blocking layer is ionically conducting and electrically insulating. The dendrite-blocking layer includes a first component and a distinct second component. The dendrite-blocking layer has a shear modulus of greater than or equal to about 7.5 GPa at 23° C. The interface layer is configured to interface with a negative electrode including lithium metal on a first side and the dendrite blocking layer on a second opposite side. The interface layer includes a second liquid electrolyte, a gel polymer electrolyte, or a solid-state electrolyte. The dendrite-blocking layer is disposed between the first liquid electrolyte and the interface layer.

Patent Agency Ranking