Abstract:
Disclosed is an apparatus and method for automatically configuring a mobile device. A mobile device can include a touch sensitive display, a processor, and a plurality of sensors to collect sensor data associated with the mobile device. The mobile device may establish an orientation of the mobile device relative to a user of the mobile device based on the sensor data. The mobile device may then determine a usage context for the mobile device based at least on the established orientation of the mobile device relative to the user. Furthermore, the mobile device may configure one or more components of the mobile device based on the determined usage context.
Abstract:
Systems and methods may provide for detecting an event on a computing device having an embedded keyboard with a default mapping of keys to functions and disabling a first subset of keys on the embedded keyboard in response to the event. Additionally, a second subset of keys on the embedded keyboard may be re-mapped to one or more different functions if an application running on the computing device supports keyboard re-mapping. In one example, re-mapping the second subset of keys includes grouping two or more keys in the second subset into a common function.
Abstract:
In some embodiments, a processor-based system may include a processor, the processor having a processor identification, one or more electronic components coupled to the processor, at least one of the electronic components having a component identification, and a hardware security component coupled to the processor and the electronic component. The hardware security component may include a secure non-volatile memory and a controller. The controller may be configured to receive the processor identification from the processor, receive the at least one component identification from the one or more electronic components, and determine if a boot of the processor-based system is a provisioning boot of the processor-based system. If the boot is determined to be the provisioning boot, the controller may be configured to store a security code in the secure non-volatile memory, wherein the security code is based on the processor identification and the at least one component identification. Other embodiments are disclosed and claimed.
Abstract:
In one embodiment, a processor includes a microcode storage including processor instructions to create and execute a hidden resource manager (HRM) to execute in a hidden environment that is not visible to system software. The processor may further include an extend register to store security information including a measurement of at least one kernel code module of the hidden environment and a status of a verification of the at least one kernel code module. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a graphics domain including a graphics engines each having at least one execution unit. The graphics domain is to schedule a touch application offloaded from a core domain to at least one of the plurality of graphics engines. The touch application is to execute responsive to an update to a doorbell location in a system memory coupled to the processor, where the doorbell location is written responsive to a user input to the touch input device. Other embodiments are described and claimed.