Abstract:
A wireless power transfer method for a wireless power transfer apparatus using full and half-bridge inverter topologies includes detecting whether or not a wireless power receiver is present within a range of power being transferrable in a wireless manner, transmitting a detection signal to the wireless power receiver, receiving at least one of identification information and setting information from the wireless power receiver, receiving a control error packet from the wireless power receiver, and controlling an amount of power to be transferred by using the combination of a driving frequency, a duty cycle or a power signal phase to the full or half-bridge inverter.
Abstract:
One embodiment of the present invention relates to a method for transmitting and receiving a signal by a second UE in a wireless communication system, comprising the steps of: receiving a message from a first UE; and determining whether to participate in flooding of the received message, wherein if it is determined to participate in the flooding, the second UE transmits the received message a preset number of times through a preset resource region for a third UE, and a reference signal related to the message transmitted for the third UE is common to one or more UEs which have received the message from the first UE and participate in the flooding.
Abstract:
An ACK/NACK (acknowledgement/negative-ACK) transmission method in a wireless access system that supports device-to-device communication and an apparatus therefor are disclosed. Specifically, a method for transmitting ACK/NACK in a wireless access system that supports the device-to-device communication comprises the steps of: receiving first data in a first sub-frame, receiving second data from a base station in a second subframe, and when data transmission and reception through the device-to-device communication carried out in a third sub-frame for transmitting the ACK/NACK information on the first data, transmitting, to the base station in a fourth sub-frame, a grouped ACK/NACK information including the ACK/NACK information on the first data and the ACK/NACK information on the second data.
Abstract:
A wireless power transmitter according to one embodiment of the present disclosure comprises a primary coil forming magnetic coupling with a secondary coil provided in a wireless power receiver and transmitting wireless power to the wireless power receiver, wherein the primary coil is formed by spirally winding a plurality of subcoils connected electrically in parallel while keeping the subcoils in contact with each other, and the subcoil is litz wire consisting of several conducting wires packed in a bundle.
Abstract:
The present disclosure relates to a wireless power transmission device. A wireless power transmission device according to an embodiment of the present disclosure includes: a coil part including a plurality of partially overlapping coils; a coil combination generator configured to generate coil combinations including at least one of the plurality of coils; and a controller configured to transmit a coil selection signal through the coil combinations and to select an operating coil combination from the coil combinations based on a response intensity of a response signal for the coil selection signal and charging efficiency of a wireless power reception device. Accordingly, a high-efficiency charging area can be extended in partially overlapping multiple coils.
Abstract:
A wireless power transmitter configured to transfer power to a wireless power receiver, including a coil assembly comprising first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; and a full-bridge inverter. The first and second bottom coils and the top coil have a substantially rectangular frame structure with a through hole in the center, wherein the top coil lies on a plane surface in the middle between the first and second bottom coils, a distance from the center of the first and second bottom coils to the center of the top coil is set to a range of 21 mm to 25 mm, the first and second bottom coils have a height of 48 mm to 50 mm and a width of 43 mm to 45 mm, and the through hole in the first and second bottom coils has a height of 25 mm to 27 mm and a width of 21 mm to 23 mm, the top coil has a height of 45 mm to 47 mm and a width of 48.5 mm to 50.5 mm, and the through hole in the top coil has a height of 20 mm to 22 mm and a width of 24.5 mm to 26.5 mm, the first and second bottom coils and the top coil have a thickness of 0.9 mm to 1.3 mm, the wireless power transmitter uses an input voltage of the full-bridge inverter to control an amount of power which is transferred, the input voltage has a range of 1 V to 18 V, wherein an operating frequency to control the amount of the power is within a range of 140 kHz to 150 kHz, and the first and second bottom coils and the top coil have a inductance value within a range of 10.6 μH to 12.0 μH.
Abstract:
The present invention relates to a method for receiving a synchronisation reference signal for device-to-device (D2D) communication by a first terminal in a wireless communication system and an apparatus therefor. More specifically, the present invention comprises a step of receiving a plurality of synchronisation reference signals including a first synchronisation reference signal and a second synchronisation reference signal over a D2D synchronisation reference signal transmission cycle, wherein the first synchronisation reference signal is transmitted by a cluster head for D2D communication and the second synchronisation reference signal is transmitted by a second terminal that belongs to a cluster for the D2D communication.