Abstract:
A UE may select a first beam for communication with a base station. The UE may attempt, through the selected first beam, at least one RACH procedure with the base station. The UE may determine that the at least one RACH procedure failed with the base station. The UE may send, after a successful RACH procedure with the base station, information indicating that the at least one RACH procedure failed. In an aspect, the UE may select a new beam for communication with the base station after the determination that the at least one RACH procedure failed, and at least a portion of the successful RACH procedure may be performed through the selected new beam.
Abstract:
When beamforming (e.g., via a millimeter wave system (mmW)) is used for wireless communication, a base station may transmit beams that are directed to certain directions. Due to the directional nature of the beams in the mmW system, an approach to determine a beam that provides a desirable gain is studied. The apparatus may be a user equipment (UE). The apparatus receives, from a base station, a plurality of signals through a plurality of beams of the base station, each of the plurality of beams corresponding to a respective antenna port of a plurality of antenna ports of the base station. The apparatus performs channel estimation for each beam of the plurality of beams from the plurality of antenna ports based on the plurality of signals. The apparatus transmits, to the base station, a feedback signal including information about one or more beams selected from the plurality of beams, the feedback signal further including one or more candidate uplink precoders.
Abstract:
When beamforming (e.g., via a millimeter wave system (mmW)) is used for wireless communication, a base station may transmit beams that are directed to certain directions. Due to the directional nature of the beams in the mmW system, an approach to determine a beam that provides a desirable gain is studied. The apparatus may be a user equipment (UE). The apparatus receives, from a base station, a plurality of signals through a plurality of beams of the base station, each of the plurality of beams corresponding to a respective antenna port of a plurality of antenna ports of the base station. The apparatus receives from the base station a number of beams whose information should be fed back to the base station. The apparatus performs channel estimation for each beam of the plurality of beams from the plurality of antenna ports based on the plurality of signals.
Abstract:
The present disclosure relates to wireless communication in mmW networks. The apparatus may be a base station. The apparatus may be configured to determine a first symbol index and a second symbol index associated with downlink resources allocated to a UE. The first symbol index may indicate when the downlink resources begin in a subframe, and the second symbol index may indicate when the downlink resources end in the subframe. The apparatus may be configured to transmit an indication of the first symbol index and the second symbol index to the UE.
Abstract:
A method, an apparatus, and a computer program product for operating a user equipment (UE) are provided. The apparatus determines a first set of beamforming directions for communication with a base station (BS) in a first network, monitors for beams in a second set of beamforming directions for communication with a millimeter wave base station (mmW-BS) based on the determined first set of beamforming directions, where the second set of beamforming directions includes the first set of beamforming directions, and where the mmW-BS is in a second network having a higher carrier frequency than the first network, and establishes a communication link with the mmW-BS based on a beamforming direction in the second set of beamforming directions.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE transmits a beamformed broadcast request signal to a base station in a plurality of transmissions in transmit spatial directions of the UE, receives a beamformed broadcast response signal from the base station in a resource of a plurality of resources, and determines a preferred transmit spatial direction of the UE based on the resource in which the beamformed broadcast response signal is received. The apparatus may be a base station. The base station scans for a beamformed broadcast request signal from a UE, determines a preferred transmit spatial direction of transmit spatial directions of the UE, determines a resource of a plurality of resources for indicating the determined preferred transmit spatial direction, and transmits a beamformed broadcast response signal to the UE in the determined resource.
Abstract:
Systems and techniques for attention calculation optimization are described. An attention calculation system identifies tensor dimensions based on a characteristic of a tensor multiplication engine. In some examples, the tensor dimensions are matrix dimensions, for instance if the characteristic indicates that the tensor multiplication engine is optimized for matrix multiplication. The attention calculation system groups at least a subset of query data into at least one query tensor having the tensor dimensions. The attention calculation system groups at least a subset of key data into at least one key tensor having the tensor dimensions. The attention calculation system determines, using the tensor multiplication engine, a tensor multiplication including the at least one query tensor and the at least one key tensor to generate output data.
Abstract:
Certain aspects of the present disclosure provide techniques for beam refinement. A base station provides information regarding what transmit beams are used to transmit different reference signal (RS) resources. In some cases, the information indicates whether a same transmit beam is used to transmit a set of RS resources (e.g., symbol, sub-symbol, or frequency resources) or whether different transmit beams are used to transmit the set of RS resources.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify that an uplink transmission to a base station is to occur in accordance with an uplink timing advance value representing an amount of time that the uplink transmission takes from transmission at the UE to reception at the base station. The UE may perform an autonomous open-loop adjustment to the uplink timing advance value. The UE may transmit the uplink transmission to the base station in accordance with the adjusted uplink timing advance value. The base station may transmit an indication of a set of uplink timing advance values for a UE to use for uplink transmissions, each of the set of uplink timing advance values representing an amount of time that an uplink transmission is expected to take from transmission at the UE to reception at the base station.
Abstract:
In some aspects, a device may receive, from a radar scanner or a LIDAR scanner of a vehicle, point data that identifies a first point and a second point. The device may receive grid information that identifies cells of a grid that is associated with mapping a physical environment of the vehicle. The device may designate, based on determining that a distance between the first point and the second point satisfies a distance threshold, a subset of the cells as an occupied cluster that is associated with the first point and the second point. The device may perform an action associated with the vehicle based on location information associated with the occupied cluster. Numerous other aspects are described.