Abstract:
An apparatus for managing and monitoring a sensing device encapsulated in a compartment formed within a medium is disclosed. The medium compartment includes a release mechanism (210) suitable for exposing the sensing device (310). The apparatus comprises an active component (510) connected to the encapsulated sensing device, the active component providing a measurement from the sensing device to a sensing measurement device. In one aspect of the invention a second active device (420) connected to an electrode associated with the release mechanism, the second active component (420) selectively providing an electrical signal to the electrode for activating the release mechanism (210) and exposing the encapsulated sensing device (310). In another aspect of the invention, a plurality of the apparatus disclosed may be incorporated into an array that is electrically connected to a select circuit for providing a voltage to selected ones of the first and second active devices for switching the active devices to a conductive state. A release circuit selectively provides a voltage to selected ones of the second active device (420), wherein the voltage is suitable for operating an associated compartment release mechanism and exposing the associated sensing device.
Abstract:
A lithographic projection apparatus includes a radiation system configured to provide a beam of radiation; a support configured to support a patterning device, the patterning device configured to pattern the beam according to the desired pattern; a substrate table configured to hold a substrate; and a projection system configured to project the patterned beam onto a target portion of the substrate. A component of the lithographic projection apparatus is at least partially provided with a cap layer that includes aluminum nitride.
Abstract:
A lithographic projection apparatus includes an illumination system configured to provide a beam of radiation; a support configured to support a patterning device, the patterning device configured to impart the beam of radiation with a pattern in its cross section; a substrate table configured to hold a substrate, and a projection system configured to project the patterned beam of radiation onto a target portion of the substrate, wherein the illumination system has a radiation source and at least one mirror configured to enhance an output of the source. The illumination system may include a second radiation source and at least one mirror positioned between the radiation sources to image the output of the second source onto the first source, thereby enhancing the output of the source. The radiation sources may be operable to emit radiation in the EUV wavelength range.
Abstract:
A system for detecting at least one contamination species in an interior space of a lithographic apparatus, including: at least one monitoring surface configured to be in contact with the interior space, a thermal controller configured to control the temperature of the monitoring surface to at least one detection temperature, and at least one detector configured to detect condensation of the at least one contamination species onto the monitoring surface.
Abstract:
The invention relates to an optical information recording medium and methods and devices to record and read information thereto and thereof. The optical information recording medium comprises luminescent nano-elements. The nano-element species differ in at least one luminescence wavelength. Therefore, a specific luminescence signal is obtained in accordance with the nano-element species irradited by a reading light beam. Methods and devices to record and read information by using such optical information recording media are also described.
Abstract:
A cleaning system for removing contamination from at least a part of a surface of a component in a lithographic projection apparatus is disclosed. The cleaning system includes an electric field generator that generates an electric field to provide cleaning particles near the surface of the component.
Abstract:
A device manufacturing method is disclosed. The method includes patterning a beam of radiation with a patterning device, projecting the patterned beam of radiation onto a target portion of a substrate, supplying a chemical reagent to a chamber that holds the patterning device and/or the substrate, and removing water from the chamber with use of the chemical reagent.
Abstract:
The disclosed embodiments relate to a luminaire (100) comprising an array of LEDs (120). The array of LEDs (120) comprises LEDs chosen from the group of blue LED, green LED, red LED, yellow LED, amber LED, cyan LED, and white LED. The luminaire (100) further comprises a reflecting tube (140) and said array of LEDs (100) is arranged in an entrance aperture (142) of said reflecting tube (140). At least one light source (160) is arranged circumferentially around the reflecting tube (140). The at least one light source (160) comprises at least one LED chosen from the group of deep blue LEDs, royal blue LEDs, deep red LEDs and UV LEDs. An optical component (170), is arranged to transmit light emitted from the at least one light source (160) into light emitted from the array of LEDs (120).
Abstract:
A series arrangement of LED loads (LP1-LP4) is coupled between output terminals of a rectifier having its input terminals coupled to a mains supply supplying a low frequency AC voltage. Control means render the LED loads conductive one by one, when the amplitude of the supply voltage increases, and non-conductive one by one when the amplitude of the supply voltage decreases. The first LED load (LP1, LP2) has a forward voltage that is substantially higher than that of the other LED loads. As a consequence, the LED utilization is comparatively high, thus allowing the LED loads used in the series arrangement to be comparatively cheap.
Abstract:
Driver device and a corresponding driving method for driving a load, in particular an LED assembly comprising one or more LEDs. To provide a better performance, better cost-efficiency, improved power factor and reduced losses, a driver device (1,1′, 2, 2′) is provided comprising a rectifier unit (10) for rectifying a received AC supply voltage (VS), load terminals (20) for providing a drive voltage (VL) and/or a drive current (IL) for driving said load, a capacitive storage unit (30) coupled between said rectifier unit and said load terminals for storing electrical energy provided by said rectifier unit and providing electrical energy to said load, and a bridge switching unit (40) coupled between said rectifier unit and said load for switching said capacitive storage unit into a load current path from said rectifier unit to said load terminals with a desired polarity and for switching said capacitive storage unit out of said load current path.