Abstract:
An electronic radial ultrasonic probe comprising an electronic radial array which comprises a plurality of ultrasonic transducers being continuously arrayed circularly around an insertion axis as center and also for which a transmission/reception of an ultrasonic wave is controlled by electronically selecting the plurality of ultrasonic transducer, comprises: a support member equipped on the electronic radial array; a lock member featured with a cavity in which the support member is inserted and with a lock groove for locking a balloon which is mounted in a manner to cover the electronic radial array and in which an ultrasonic medium is filled; and a filler member which is constituted by an adhesive material converting from a fluid state to a solid state, and is filled in the cavity.
Abstract:
An ultrasonic imaging system (100) having an ultrasonic probe (110) which improves poor harmonic performance of existing transmit circuits through the use of a linear high-voltage transmit amplifier (129) on each sub-channel to amplify low-voltage arbitrary shape transmit waveforms generated by the ultrasonic system (100) is presented. The linear high-voltage amplifier (129) of the ultrasonic probe (110) amplifies low-voltage arbitrary shape transmit waveforms beam-formed by a micro-beam-former (119) of the ultrasonic system (100).
Abstract:
The invention relates to a catheter system. The system comprises a catheter body having a chamber containing a low acoustic impedance medium. The catheter body includes an elongated body with an external surface and an ultrasound transducer having an external side between a first end and a second end. The ultrasound transducer is positioned over the external surface of the elongated body such that the first end is adjacent to the chamber.
Abstract:
An ultrasound catheter is disclosed for providing substantially real-time images of small cavities. The ultrasound catheter is characterized by separate and distinct materials for backing the transducers and for carrying the electronics components. The separate materials comprise an electronics carrier meeting the requirements for holding the integrated circuitry of the ultrasound device and a backing material displaying superior characteristics relating to reducing ringing and minimizing the effect of other sources of signal degradation in the transducer assembly. Also, in accordance with the present invention, a technique is described for connecting the conductor lines of the separate transducer assembly and electronics body.
Abstract:
An ultrasonic probe 10 is formed by arranging a plurality of transducers 26a to 26m for converting drive signals into ultrasonic waves to transmit the waves to an object to be inspected, and receiving ultrasonic waves generated from the object to convert the waves into electrical signals. Each of the transducers 26a to 26m has a plurality of oscillation elements 34-1 to 34-30, and each of the oscillation elements 34-1 to 34-30 has a characteristic in which the electromechanical coupling coefficient changes in accordance with the strength of the direct-current bias applied by being superposed on the drive signals. Electrodes 35, 36, and 37 of each of the oscillation elements 34-1 to 34-30 are connected to terminals 49-1 and 49-2 to which the drive signals are applied.
Abstract:
An ultrasonic image scanning system for scanning an organic object includes a container for containing a coupling medium for transmitting an ultrasonic signal to the organic object disposed therein whereby a simultaneous multiple direction scanning process may be carried out without physically contacting the organic object. The ultrasonic image scanning system further includes ultrasound transducers for transmitting the ultrasonic signal to the organic object through the coupling medium without asserting an image deforming pressure to the organic object. These transducers distributed substantially around a two-dimensional perimeter of the container and substantially at symmetrical angular positions at approximately equal divisions of 360 degrees over a two-dimensional perimeter of the container. The transducers are further movable over a vertical direction alone sidewalls of the container for a real time three dimensional (3D) image data acquisition. The container further includes sidewalls covered with a baffle layer for reducing an acoustic reverberation.
Abstract:
A method and system for using two-dimensional transducer arrays for improving the field of view during an ultrasonic examination are disclosed. The ultrasonic imaging system includes a two-dimensional transducer array with a plurality of acoustic elements, a beam controller, a signal processor, and a display. The beam controller controls a generated acoustic beam capable of being advanced longitudinally or laterally along the two-dimensional transducer array. Additionally, the generated acoustic beam is capable of being phase-shifted by the beam controller. Combining the phase shifting of and advancement of the acoustic beam increases the field of view of the two-dimensional array.
Abstract:
An ultrasound catheter is disclosed for providing substantially real-time images of small cavities. The ultrasound catheter is characterized by separate and distinct materials for backing the transducers and for carrying the electronics components. The separate materials comprise an electronics carrier meeting the requirements for holding the integrated circuitry of the ultrasound device and a backing material displaying superior characteristics relating to reducing ringing and minimizing the effect of other sources of signal degradation in the transducer assembly. Also, in accordance with the present invention, a technique is described for connecting the conductor lines of the separate transducer assembly and electronics body.
Abstract:
A shock wave source has a coil carrier, having a longitudinal axis, a coil and a metallic membrane separated from the coil in insulating fashion for generating shock waves. The coil carrier has a generated surface, a first cover surface facing toward the coil and a second cover surface facing away from the coil. For reducing the low-frequency sound generation when generating shock waves, a cross-sectional area of the coil carrier intersected at a right angle by the longitudinal axis has a non-circular contour. A reduction of the audible sound generation when generating shock waves can also be achieved when the second cover surface of the coil carrier is non-flat.
Abstract:
This invention relates to an improved method and apparatus for generating profiled pulses of ultrasonic frequency vibratory energy at a distal surface of an ultrasonic applicator of an ultrasonic surgical instrument for application to tissues of a patient, including the providing of a profiled pulse signal with a first profile and a maximum magnitude during a first time portion and a second profile and a minimum magnitude during a second time portion, the second time portion being greater than or equal to the duration of the first time portion, the first time portion being between one millisecond and fifty milliseconds in duration, and the maximum magnitude in the range between two and twenty times the minimum magnitude.