Abstract:
An entrained-flow gasifier reactor includes a vessel and a first liner within the vessel. The first liner extends around a reaction zone in the vessel and has an inlet end and an exit end with respect to the reaction zone. The first liner includes a drip lip at the exit end. An isolator is arranged near the drip lip. The isolator is operable to thermally isolate the drip lip from a quench zone downstream from the reaction zone such that molten slag at the drip lip remains molten.
Abstract:
Problem to be SolvedTo provide a waste gasification melting apparatus which, even if a fuel gas is used as an alternative to a part of the coke, the temperature of the coke bed can be sufficiently raised, and a method using the same.SolutionA waste gasification melting apparatus including an oxygen rich air supply apparatus 14 for blowing oxygen rich air into a tuyere 5, and a fuel gas supply apparatus 15 for supplying a fuel gas to the tuyere 5, and a controller 16 for controlling the oxygen rich air supply apparatus 14; the oxygen rich air supply apparatus 14 mixing air and oxygen to prepare oxygen rich air and supply the oxygen rich air to the tuyere 5; and the controller 16 controlling the amount of air to be mixed and the amount of oxygen to be mixed in the oxygen rich air supply apparatus 14 so as to give an oxygen concentration of the oxygen rich air in accordance with the amount of fuel gas supplied to the tuyere 5 from the fuel gas supply apparatus 15.
Abstract:
An optimized gasification/vitrification processing system having a gasification unit which converts organic materials to a hydrogen rich gas and ash in communication with a joule heated vitrification unit which converts the ash formed in the gasification unit into glass, and a plasma which converts elemental carbon and products of incomplete combustion formed in the gasification unit into a hydrogen rich gas.
Abstract:
An optimized gasification/vitrification processing system having a gasification unit which converts organic materials to a hydrogen rich gas and ash in communication with a joule heated vitrification unit which converts the ash formed in the gasification unit into glass, and a plasma which converts elemental carbon and products of incomplete combustion formed in the gasification unit into a hydrogen rich gas.
Abstract:
A system and process capable of promoting the energy content of a syngas produced from a biomass material. The system and process entail compacting a loose biomass material and simultaneously introducing the compacted biomass material into an entrance of a reactor tube, and then heating the compacted biomass material within the tube to a temperature at which organic molecules within the biomass material break down to form ash and a fuel gas mixture. The fuel gas mixture is withdrawn from the tube and the ash is removed from the tube through an exit thereof. The entrance and exit of the tube, the compaction step, and the removal step cooperate to inhibit ingress of air into the tube by forming a plug of the biomass material at the entrance of the tube and a plug of ash at the exit of the tube.
Abstract:
Ethanol and other liquid products are produced from biomass using gasification of the biomass to produce a syngas containing CO2, CO, H2 and sulfur or sulfur compounds that passes the syngas to a fermentation step for the conversion of the CO and CO2 and H2 to ethanol. Sulfur and sulfur compounds in the syngas are used to satisfy sulfur demanded by bacteria in the fermentation step. A sulfur control additive is added to the gasification to control syngas sulfur and sulfur compounds at a desired concentration to meet bacteria sulfur demand.
Abstract:
An optimized gasification/vitrification processing system having a gasification unit which converts organic materials to a hydrogen rich gas and ash in communication with a joule heated vitrification unit which converts the ash formed in the gasification unit into glass, and a plasma which converts elemental carbon and products of incomplete combustion formed in the gasification unit into a hydrogen rich gas.
Abstract:
In a process for manufacturing gas from hydrogen-bearing starting materials—such as those also containing carbon, carbonaceous materials, hydrocarbons or other hydrogen-bearing materials—the starting materials are fed into a 3-dimenstional plasma region to produce two output streams: a gas substantially containing hydrogen, and a by-products stream. Apparatus and a method are disclosed for generating gas which is substantially hydrogen gas (but may also contain other gaseous species) from the essentially complete dissociation of the starting materials in a plasma operating under pyrolytic conditions.1 Starting materials are fed into a plasma reactor. These starting materials are heated by one or more disclosed plasma sheets and/or plasma arrays in a reactor. The manufactured gas is vented from the reactor through an outlet. By-products are also removed from the reactor after being processed to remove the manufactured gas constituents. In addition, organic and inorganic matter that is input to the plasma is rendered ecologically and biologically safe and the by-products are extracted from the reactor for disposal (e.g., carbon sequestering) or to be recycled into various uses (e.g., ceramic tiles, carbon black, carbon nanotubes,2 pyrolytic graphite, for insulation and road paving materials).
Abstract:
A gasification process for making producer gas is disclosed. A consistent quality of raw carbon source material is supplied for gasification. The impurity content of the raw carbon source material to is adjusted to within an acceptable consistent range of impurity content. The raw carbon source material is heated in a non-oxidizing environment to adjust the tar content and to remove volatile hydrocarbon constituents and to produce a devolatilize carbon source material. The devolatilized carbon source material is gasified by heating the carbon source material to a gasification temperature in a gasification generator, supplying steam, and supplying enhanced oxygen content air to react with the devolatilized carbon source material and to thereby form consistent, high energy value, low impurity producer gas.
Abstract:
The invention relates to a method for the gasification of carbonaceous materials in the form of solid particles. The inventive method comprises the following steps consisting in: heating a gaseous mixture formed by a feed gas and water vapour in a heater (1); bringing the particles of the carbonaceous materials into contact with the heated gaseous mixture in a pressurised gasification reactor (2), with the formation of a raw reaction gas and unburnt ash; separately supplying the heater with (i) water vapour and (ii) the aforementioned feed gas; taking separate samples from the heater of the gaseous mixture (at point 13) and of part of the feed gas in the dry state (at point 16); and injecting into the gasification reactor said dry feed gas and a gas forming therewith a fuel mixture in the ash.