Abstract:
A compressed gas cylinder hanger having resiliently flexible engagement with the neck of the compressed gas cylinder to fix or resist rotation of the compressed gas cylinder hanger about neck.
Abstract:
A gas cylinder (100) in the neck (20) of which is installed a balanced valve (26). The valve is fitted in the outlet of the cylinder and its output emerges into a recess (22) which opens to the top surface (23) of the cylinder. Thus the valve is protected from physical damage. A thread (27) in the bore enables the attachment of fittings such as a regulator or a filling device (not shown) which cooperate with the valve (26) to control passage of gas from or into the cylinder.
Abstract:
A pressure container comprising axially extending side walls formed of plastic extending between a top end and a bottom end. A metal top is attached at a top seam in pressure-containing relation to the top end of the side walls, and a metal bottom attached at a bottom seam in pressure-containing relation to the bottom end of the side walls. Optional top and bottom beads are formed in the side walls to aid in sealingly securing the metal top and bottom to the side walls. A method for containing pressurized materials by providing and filling such a pressure container is also shown.
Abstract:
A method of filling and sealing a gas capsule having (i) a hollow body portion and (ii) an elongate hollow neck portion having a free open distal end extending from the body portion is disclosed. The method is accomplished by applying a filling cap to the open end of the neck portion while evacuating the capsule and refilling with helium. Two crimping steps while pressure is maintained finishes the filling and sealing method.
Abstract:
The present invention relates to a spray can and a pressure releasing structure thereof, in which the pressure in the spray can can be easily and quickly released. A spray can 200 comprises a sealed can body 14 for holding a compressed fluid such as cosmetics, paints, or propane gas, a spout path 16 for leading the fluid in the sealed can body 14 to the outside, an opening/closing means 18 for opening and closing the spout path 16, and an open-state maintaining means 202 for maintaining the spout path 16 in its open state.
Abstract:
An apparatus and method for charging a gas storage and dispensing vessel with gas to a predetermined pressure level, e.g., a gas to be employed in a semiconductor manufacturing operation such as a hydride, halide or organometallic reagent gas. In the gas charging, a source gas is liquefied, e.g., in a cryotrap, and then gasified in closed flow communication with the vessel to introduce the gas thereinto, and such liquefaction/gasification steps are carried out alternatively and repetitively, to charge the vessel in a step-wise, progressive fashion with gas, until a full fill state is achieved, with the contained gas at the predetermined pressure level.
Abstract:
A high-efficiency liquid oxygen, (LOX) storage/delivery system utilizes a portable LOX/delivery apparatus with a portable LOX container. A portable-unit LOX transfer connector is connected to the portable LOX container and is connectable to a main source of LOX in a primary reservoir LOX container. A portable-unit oxygen gas transfer connector is provided for transferring oxygen gas from the portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient. An inter-unit oxygen gas transfer connector also is provided for connecting the portable apparatus to a stationary source of oxygen gas in the primary reservoir container, for transferring oxygen gas to the portable apparatus. A portable-unit primary relief valve is connected to the portable LOX container for venting oxygen gas out of the portable LOX container when pressure in the portable LOX container reaches a predetermined level. When the inter-unit oxygen gas transfer connector of the portable container is connected to the stationary source of oxygen in the primary reservoir container, oxygen gas can be transferred to the oxygen gas delivery device for delivery to the patient from the portable LOX container while oxygen gas is transferred to the portable container from the stationary source of gas in the primary reservoir LOX container.
Abstract:
This invention is directed to an apparatus for controlling the discharge of pressurized fluids from the outlet of a pressurized vessel, and particularly directed to multiple fluid dispensing check valve devices within the vessel for storing and controlling the flow of fluid or gases out of the vessel.
Abstract:
An apparatus for safely delivering a hazardous fluid substance to a receiving structure includes first and second supply cylinders containing the fluid substance and each supply cylinder having a supply cylinder release port; a high pressure containment vessel having a vessel wall and being sized to receive and safely enclose the first and second supply cylinders; a high pressure first tube extending from each of the first and second supply cylinders, and in fluid communication with the supply cylinder release ports and extending to and being in fluid communication with a vessel port in the vessel wall; and a vessel valve in fluid communication with each of the first tube for controlling delivery of the fluid substance from the first and second supply cylinders and from the vessel.
Abstract:
A liquefiable gas pressure cylinder and method for making the same with the cylinder including a cylindrical shell, and heads fusion welded at opposites ends of the shell. The side ends where the heads are joined to the shell are crimped radially inward to each end to form chimes. The welds are 100% radiographed and heat treated. The heads are dished to have a domed center portion which has a profile and thickness so that the domed center portions will reverse before any other part of the cylinder is stressed beyond a yield limit for such part.