Abstract:
A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The prosthetic component is a housing for the at least one sensor and electronic circuitry. The electronic circuitry is hermetically sealed from an external environment. The at least one sensor couples to the support surface of the first structure. The support surface of the first structure is compliant. The first and second structure are coupled together housing the at least one sensor and electronic circuitry.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
A method, apparatus and software is disclosed for using parameters of acoustic emissions emitted from an structure, such as aircraft landing gear, for detecting yield in the structure.
Abstract:
A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The support surface of the first structure is compliant. The first and second structure are coupled together housing the at least one sensor. In one embodiment, the first and second structure are welded together forming the hermetic seal that isolates the at least one sensor from an external environment. The at least one sensor can be a pressure sensor for measuring load and position of load.
Abstract:
An X-ray stress measuring apparatus, for measuring stress on a sample, comprises: a pair of X-ray generating means (10, 11, 10′, 11′) for irradiating X-ray beams, determining an angle defined between the X-ray beams, mutually, at an arbitrary fixed angle, on a plane inclining by an angle desired with respect to a surface of the sample to be measured stress thereon; an X-ray sensor portion (29) for detecting plural numbers of Debye rings (C, C′), which are generated by incident X-ray beams from said pair of X-ray generating means; and a battery (410) for supplying necessary electricity to each of parts of the apparatus, wherein said X-ray sensor portion is made up with only one (1) piece of a 2-dimensional X-ray detector (20) or a 1-dimensional X-ray detector (20′), and is disposed in a position where the plural numbers of Debye rings generated by the incident X-ray beams from the at least one pair of X-ray generating means are adjacent to each other, or intersect with each other, thereby detecting the plural numbers of the Debye rings caused due to the X-ray and the X′-ray in common with.
Abstract:
The invention relates to a stress gauge of the type having an acoustic resonant structure, including a piezoelectric transducer (10) connected to a holder (20), the holder (20) including opposite the piezoelectric transducer (10) an imbedded reflecting portion (40). The imbedded reflecting portion (40) reflects the volume acoustic waves generated by the piezoelectric transducer (10) when it is excited according to a harmonic mode of the structure and propagating into said holder (20), the reflecting portion (40) being arranged at a distance from the piezoelectric transducer (10) such that the integral of the stress on the propagation distance of the volume acoustic waves up to their reflection is different from zero.
Abstract:
A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. In one embodiment, the distractor includes a measurement device that couples to the distractor. In a second embodiment, the sensor array and electronics are placed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.
Abstract:
A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. The present invention includes a database of data, wherein a first set of data is used for comparison with a second set of data to determine the conditions of the material microstructure.
Abstract:
“Resonance Force Sensor” has broad—and in some cases revolutionary—applications throughout aerospace, maritime, transportation, and industrial force sensing as a low cost, embedded, robust, self-calibrating strain-pressure sensor. Applications include but are not limited to structural load measurement, structural health monitoring, fluid and gas line pressure measurement, batch process manufacturing, and other force-sensing applications. When a complex structure, e.g. an aircraft or ground vehicle structure, is so instrumented, the present invention serves as the primary sensory component for a highly accurate, automatic, on-board vehicular weight and balance system. This sensor system can also be used in non-vehicular structures to measure axial, radial or flexural loading, and hence gravitational mass loading, of structural elements and structural systems.
Abstract:
The system (10) comprises a sensor (18) 90×90×90×30 mm as an electromagnetic microwave cavity (20) with a coupler (22) with a wire (40) and an antenna (42). Cavity (20) produces a response signal (26) in response to an interrogation signal (24) from interrogator (16). Sensor (18) is coupled to a structure (14) to allow a strain to alter the resonance properties. 3.6 GHz is used with a detection of a 2.5 kHz change. If not temperature via strain is detected a mechanical amplifier is used with cavity (20) for temperature compensation. Continuous or intermittent narrowband signals are used as interrogation signals (24). Used with bridges for structural health monitoring. Also for aircrafts, dams, buildings, vehicles.