Abstract:
A force measuring instrument having at least one force sensor (16) and one force pickup element (13) resting directly or indirectly in spring-loaded fashion on the force sensor. A spring assembly (17; 25-28) is provided that presses the force pickup element (13; 23) against the at least one force sensor (16; 19-22) with a maximum force value to be measured. The direction of the force to be measured and acting upon the force pickup element (13; 23) is oriented counter to the force of the spring assembly (17; 25-28). As a result, when a force is exerted upon the force pickup element (13), the overall force action on the force sensor (16) is reduced, thus precluding the possibility of damage to or destruction of the force sensor by an excessive incident force.
Abstract:
In a pressure sensor, a force is transferred via a pressure plunger end made of relatively hard material onto a measurement element including a sensor membrane on a support. The sensor membrane is part of a micromechanical arrangement made of silicon. A metal structure made of a metal of lower hardness compared with the hardness of the material of the pressure plunger end is applied onto the sensor membrane. This metal structure can be impressed and plastically deformed with increased force by the contact surface of the pressure plunger end, in such a way that conforming contact of the contact surface is achieved, and potential angular errors are compensated for.
Abstract:
A force measuring apparatus comprises a steel base body and a bending element joined thereto. The bending element comprises a composite of at least first and second layers. The first layer is comprised of steel and is welded to the base body. The second layer is comprised of a hard material which is harder than the steel material of the first layer. The second layer includes a section of reduced thickness defining a bending region to which a deformation sensor is attached to sense deformations of said bending region in response to the application of the force being sensed.
Abstract:
A novel force measuring device of simple design is provided with complementary stop surfaces protecting the device against over-loading. Alternatively, overloading is prevented by duplicating the force measuring device with two portions operating in opposite directions of force application. Such force measuring devices are advantageously incorporated in couplings between a motor driven vehicle and a further vehicle to be coupled thereto. Signals derived from these force measuring devices are used in a board computer for controlling the operation of the motor driven vehicle and the further vehicle coupled thereto.
Abstract:
A torsion ring transducer has a sensing ring mounted in a ring housing by a first ring web between the housing and the sensing ring and by a second ring web between the sensing ring and a central load application body. The ring housing is secured to a mounting base by an isolation device, for example, a ring cylinder having a defined cylinder wall length in the direction of a central transducer axis and a defined cylinder wall thickness in the radial direction. The ring cylinder prevents mounting effects from reaching the sensing ring.
Abstract:
A force transducer with an electromechanical transducer element for fitting in force plates (i.e. measuring platforms) includes adjacent a first axial end a radial mounting flange with a greater outside diameter than that adjacent the second axial end. This make it possible, after connecting the signal lines, to insert the transducer in a mounting hole of the base plate of the force plate and then fix it by welding, brazing, soldering or cementing. The transducer with its signal lines thus becomes an integral part of the base plate and is sealed completely against outside influences. The recesses of the base plate may be filled with a curable resin, providing further portection against mechanical shocks and corrosion influences while at the same time enhancing the rigidity of the force plate.
Abstract:
A force measuring device of unitary design comprising a beam provided with force sensitive elements supported on a base plate by support elements at a closed distance, the support elements being housed in recesses provided at bottom surface of said beam and a top surface of said base plate. Since the support elements are integrated in said beam no separate support elements are necessary for supporting said force measuring device such that lateral forces are compensated.
Abstract:
The force measuring device comprises two plates arranged essentially parallel to each other and having therein between an elastomeric material into which a pressure sensor is embedded.
Abstract:
Apparatus for measuring at least one component of the forces applied to a beam comprises supports at a pair of spaced locations along the beam, each support having an arm, the arms extending axially toward each other. One arm carries a displacement sensor and the other arm carries a transmission element coupled to the moveable part of the displacement sensor. Each support represents arbitrary points d and e, and measurement of the component parallel to a straight line through the displacements of the point d with respect to the point e makes it possible to obtain the above-mentioned component. This result is independent of the position of the resultant of the forces applied to the beam with respect to the point of measurement.
Abstract:
In the manufacture of cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors by extrusion of the zirconium-based alloy and cold rollings of the extruded product with annealings, intermediate annealings, between the cold rollings and a .beta.-quenching of the extruded product prior to the last cold rolling, a cladding tube is provided which has at the same time good corrosion properties and mechanical properties by performing the .beta.-quenching prior to a cold rolling, after which an intermediate annealing is performed at a temperature of 500.degree.-675.degree. C., and preferably at a temperature of 500.degree.-610.degree. C. The zirconium-based alloy is a zirconium-tin alloy comprising 1.2-1.7% tin, 0.07-0.24% iron, 0.05-0.15% chromium and 0-0.08% nickel.