Abstract:
A display sheet comprising a substrate carrying layers of material; including a polymer-dispersed cholesteric liquid-crystal layer having a first high reflection state within a portion of the visible light spectrum and a second less-reflective state in said spectrum, said states being changeable by electric field between the two states which states can be maintained in the absence of an electric field; a first transparent conductor disposed over the polymer-dispersed cholesteric liquid-crystal layer; a complementary light-absorbing layer below the polymer-dispersed cholesteric liquid-crystal layer having relatively high light absorption within the spectrum of the high-reflection state of the polymer-dispersed cholesteric liquid-crystal layer and having relatively less light absorption in the spectrum complementary to that of the high reflection state of the polymer-dispersed cholesteric liquid-crystal layer; and a reflective second conductor under said complementary light-absorbing layer reflecting light received from the complementary light-absorbing layer back through the complementary light-absorbing layer.
Abstract:
A transmission-reflection type liquid crystal display device including a first transparent substrate and a second transparent substrate; a liquid crystal layer between the first transparent substrate and the second transparent substrate; a linear polarizer and a resinoid color filter provided on the second transparent substrate; a left-handed cholesteric liquid crystal circular polarizer provided on the first transparent substrate; and a left-handed cholesteric liquid crystal color filter formed on the first transparent substrate in order to be situated between the cholesteric liquid crystal circular polarizer and the liquid crystal layer. The liquid crystal display device having this structure can be driven as a reflection type and a transmission type display. The cholesteric liquid crystal color filter having good color purity is added to the resinoid color filter to improve the overall color properties of the device.
Abstract:
A liquid crystal display element comprises a polarization plates, phase difference plates, a liquid crystal layer, and selectively reflective layers for reflecting part or whole of circularly polarized light in a specific direction. The products of the respective thicknesses of the polarization plate, phase difference plate, liquid crystal layer, and selectively reflective layer and the difference between an average refractive index in a direction perpendicular to each display plane and an average refractive index in a direction parallel to the display plane are set so that the absolute value of their sum total is 50 nm or less. Each selectively reflective layer is formed of a layer having positive refractive index anisotropy and a layer having negative refractive index anisotropy.
Abstract:
A polarization light splitting film having a light receiving side and a light transmitting side. The polarization light splitting film includes an optical rotation selection layer at the light receiving side for reflecting one of right and left circularly polarized components of a light beam that is incident on the light receiving side and for transmitting the other one of the right and left circular polarization components of the light beam, and a quarter-wave layer laminated over the optical rotation selection layer at the light transmitting side.
Abstract:
The liquid crystal display element includes a polarization plate, a liquid crystal layer provided in the rear of the polarization plate, for modulating incident light in correspondence with an applied voltage, a selectively reflective layer provided behind the liquid crystal layer, for reflecting a first circular polarization component of incident light, and a back light source arranged in the rear of the selectively reflective layer, for emitting light having intensity peaks for a plurality of predetermined wavelengths. The selectively reflective layer has first reflection factors to the first polarization components of incident light falling within first small regions of visible light, including the plurality of predetermined wavelengths, and has second reflection factors to the first polarization components of incident light falling within second small regions of visible light, not including the plurality of predetermined wavelengths. The first reflection factors are smaller than the second reflection factors.
Abstract:
Monocular and stereoscopic color display systems, wherein passive cholesteric liquid crystal (LC) filter/mirrors and active variable retarder type LC arrays are used in combination to produce low cost, high resolution, multicolor and full color displays, suitable for use as advertising, automotive, aircraft, computer, games and electron instrumentation displays.
Abstract:
The efficiency of LC displays is improved by the use of a polymeric chiral nematic liquid crystal rear polarizer and reflective backlight housing which increases the net transmission of light and, at the same time, reduces the weight of the assemblage and increases battery life by utilizing lower levels of illumination. The polymeric chiral nematic liquid crystal can be a freestanding film or films, or can be supported by a single glass substrate. The liquid crystal polarizer can have a bandwidth sufficient to transmit electromagnetic radiation across the entire visible spectrum.
Abstract:
A display system (10) receives from a light source (12) a sequence of images, each representing a different depth plane of a subject, and selectively reflects each image from its corresonding one of plural light direction modulators (16 and 18) to synthesize a three-dimensional image of the subject. Each modulator is positioned along an axis (20) at a location that corresponds to a different depth plane. Each modulator reflects the first image incident to it and transmits the succeeding images in the sequence. In a display system having N+1 depth plane images, each of N modulators comprises a variable optical retarder (34) and a liquid crystal chiral cell (36). The N modulators reflect left-circularly polarize light and transmit right-circularly polarized light. An N+1 modulator preferably comprises a liquid crystal chiral cell and reflects light incident to it. An alternative embodiment (50) develops full color images.
Abstract:
The optical transitions of extrinsically optically active soluble and insoluble materials become circularly dichroic when in contact with twisted nematic liquid crystalline materials. The circularly dichroic optical properties induced in the normally extrinsically optically active materials are utilized to alter the relative amounts of left and right hand circularly polarized light in elliptically polarized light including producing circularly polarized light.
Abstract:
The optical transitions of twisted nematic liquid crystalline compositions exhibit circular dichroism. The circular dichroism in twisted nematic liquid crystalline compositions is utilized to alter the relative amounts of left and right hand circularly polarized light in elliptically polarized light, including producing circularly polarized light.