Abstract:
A circuit breaker includes a housing; separable contacts mounted in the housing; and an operating mechanism for opening and closing the separable contacts. An overcurrent assembly is responsive to selected conditions of current flowing through the separable contacts and actuates the operating mechanism to trip open the separable contacts. A bonnet forms a U-shape which surrounds the separable contacts and which cools and splits an arc when the operating mechanism trips open the separable contacts. A first bonnet piece forms a first leg of the bonnet, and a second bonnet piece forms a second leg and a base of the bonnet.
Abstract:
A circuit breaker that is capable of detecting ground faults as well as arc faults includes a at least a first current transformer, a line conductor extending through the current transformers, a circuit board, and a pair of sensing leads extending between the line conductor and the circuit board. In a first embodiment the line conductor is a relatively rigid line bus bar, and in a second embodiment the line conductor is a relatively flexible line shunt. The circuit board is disposed adjacent a first side of a separating wall within the circuit breaker, and the line conductor extends along the first side such that the sensing leads that extend between the line conductor and the circuit board do not pass through a plane defined by the separating wall. The circuit breaker includes a bimetal strip that is free of sensing leads that extend between the bimetal strip and the circuit board.
Abstract:
A circuit breaker includes a housing; separable contacts mounted in the housing; a latchable operating mechanism including a latch lever which when released opens the separable contacts; and an overcurrent assembly responsive to selected conditions of current flowing through the separable contacts for releasing the latch lever to trip the separable contacts open. The circuit breaker also includes an arc fault indicator; an arc fault trip actuator which when energized moves a first indicator latch for actuating the arc fault indicator and a second latch for releasing the latch lever to trip the separable contacts open; and an arc fault current assembly responsive to selected arc fault conditions of current flowing through the separable contacts for energizing the arc fault trip actuator to actuate the arc fault indicator and to trip the separable contacts open.
Abstract:
An aircraft circuit breaker includes a housing; separable contacts mounted in the housing; a latchable operating mechanism including a latch member which when unlatched opens the separable contacts; and an overcurrent assembly responsive to selected conditions of current flowing through the separable contacts for unlatching the latch member to trip the separable contacts open. A movable and illuminable arc fault indicator has a first ring portion and second leg portions internal to the housing. An arc fault actuator which when energized moves one of the second leg portions. An arc fault current assembly responds to selected arc fault conditions of current flowing through the separable contacts to energize the arc fault actuator to move the second leg portions internal to the housing and the first ring portion external to the housing. The arc fault current assembly includes a light for illuminating the first ring portion.
Abstract:
An arc fault circuit interrupter system for use with an electrical circuit includes an arcing fault detector which monitors the electrical circuit and a controller which generates a trip signal in response to the detection of arcing faults. The controller may also generate one or more communication signals corresponding to information relating to the operation of the arcing fault circuit interrupter. The system may also include one or more of the following: a communication port which communicates to a user the information relating to operation of the arc fault circuit interrupter in response to the communication signals; a memory for retaining predetermined information related to the condition and operation of the arcing fault circuit interrupter, with or without a backup memory; and a combined self-test/reset switch.
Abstract:
A signaling system employing indicator lamp means and an audible alarm is employed to remind a user to periodically test his GFCIs and to provide information regarding the status of the GFCI. The power lines that supply the GFCI with power are also coupled to the circuits on the PCB to disconnect power to those circuits of the GFCI that trips due to faults or tests.
Abstract:
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational or if an open neutral condition exists.
Abstract:
The toggle mechanism of a circuit breaker is connected at one end to the pivoted contact arm and at the other end to a pivoted latch lever which is engaged to latch the toggle mechanism by a latch member pivoted for movement in a plane perpendicular to the plane of the toggle mechanism. The latch member serves as an armature for a trip motor energized by a trip circuit responsive to an arc fault and/or a ground fault to unlatch the toggle mechanism and trip the circuit breaker open. The latch member is also tripped by a helical bimetal responsive to persistent overcurrents and coupled to the latch member through an ambient compensator bimetal cantilevered from the latch member. A flexible shunt connected between the helical bimetal and contact arm passes through an extension of the magnetic circuit of the trip motor to generate a magnetic field of sufficient strength to trip the latch member instantaneously in response to a short circuit.
Abstract:
An arc fault circuit breaker comprising an electronics portion that is interconnected with a mechanical portion is presented. A plunger arm affixed to the end of a plunger shaft of a solenoid connects the electronics portion with the mechanical portion. A protrusion is provided to assist in assembly of the circuit breaker. The protrusion depends from the plunger arm. An assembler applies a light downward force with one finger on the protrusion and the plunger arm tends to assume a position at right angles to the surface of the printed circuit board. When the electronics portion is connected with the mechanical portion, the plunger arm is properly aligned and it enters into the slot. If the electronics portion is slightly offset, the assembler's finger on the protrusion can move the plunger arm slightly to align the plunger arm. Thus, the invention enables an assembler to hold and guide the plunger arm into the correct position with one hand while assembling the circuit breaker.
Abstract:
An apparatus for use in arcing fault detection systems within circuit breakers and which is adapted for automated production by top-down assembly. In one embodiment, the apparatus includes a circuit board and a two-piece sensing coil within a two piece housing with its center oriented horizontally relative to the circuit board. In other embodiments the sensing coil is one-piece and is either preassembled with a sensing bus and oriented horizontally or oriented vertically relative to the circuit board. Also included are several methods for making electrical connections to the circuit breakers.