Abstract:
A detector for radiation, particularly high energy electromagnetic radiation is provided. The detector includes a converting section including a cathode for converting the radiation incident on the converting section in electrons by the photoelectric effect. The detector further includes a gas electron multiplier for generating an electron avalanche from electrons which are generated by the converting section and enter the gas electron multiplier, the gas electron multiplier including a first electrode, a dielectric layer and a second electrode, the first electrode being disposed at a first side of the dielectric layer adjacent to the converting section and the second electrode being disposed at a second side of the dielectric layer opposite to the first side. The gas electron multiplier includes a number of holes filled with gas, the holes extending through the first electrode, the dielectric layer and the second electrode.
Abstract:
A device (1), such as a detector or imaging device, for detecting ultraviolet light, is described. The device comprises a housing (4) for a chamber. Disposed within the housing is a charge carrier multiplier structure (9) comprising a dielectric sheet (10) having first and second opposite faces (11, 12) and having an array of holes (16) traversing the dielectric sheet between the first and second faces. The device includes a photocathode (13) supported on the first face of the dielectric sheet, having a work function of less than 6 eV. The device includes an anode (14) supported on the second face of the dielectric sheet.
Abstract:
A position-sensitive ionizing-radiation counting detector includes a first substrate and a second substrate, and a defined gas gap between the first substrate and the second substrate. The first and second substrates comprise dielectrics and a discharge gas is contained between the first and second substrate. A microcavity structure comprising microcavities is coupled to the second substrate. An anode electrode is coupled to the first substrate and a cathode electrode is coupled to the microcavity structure on the second substrate. The detector further includes pixels defined by a microcavity and an anode electrode coupled to a cathode electrode, and a resistor coupled to each of the cathode electrodes. Each pixel may output a gas discharge counting event pulse upon interaction with ionizing-radiation. The detector further includes a voltage bus coupled to each of the resistors and a power supply coupled to at least one of the electrodes.
Abstract:
A radioactive gas measurement apparatus comprises: a radiation measurement cell comprising an inlet pipe and a discharge pipe, the radiation measurement cell introducing and discharging a radioactive gas containing a nuclide to be measured and a positron emitter nuclide through the inlet pipe and the discharge pipe; a radiation detector for measuring a radiation generated from the radioactive gas; and a radiation collimator allowing the radiation measurement cell to communicate with the radiation detector and setting a predetermined radiation measurement geometry condition between the radiation measurement cell and the radiation detector. Then, as the predetermined radiation measurement geometry condition, an inner wall area of the radiation measurement cell which the radiation detector views through the radiation collimator is set equal to or less than a half of a total inner wall area of the radiation measurement cell.
Abstract:
A direct ion storage (DIS) radiation detector or dosimeter has a design that is easy and low cost to manufacture using semiconductor processing techniques. The detectors include internal communications interfaces so they are easy to read. Different interfaces, including wired, e.g. USB ports, and wireless interfaces, may be used, so that the dosimeters may be read over the internet. The detectors can thus be deployed or used in a variety of detection systems and screening methods, including periodic or single time screening of people, objects, or containers at a location by means of affixed dosimeters; screening of objects, containers or people at a series of locations by means of affixed dosimeters, and surveillance of an area by monitoring moving dosimeters affixed to people or vehicles.
Abstract:
The present invention includes a method for radiation detection. The present invention utilized boron-coated detectors as a new alternative to large 3He tubes that will address the timing limitations of 3He-based detectors in active interrogation systems, by providing a 100-times faster ion collection time. This may enable the counting of prompt neutrons starting within 10 μs following each gamma ray pulse. Current 3He-based detectors can only count delayed neutrons, and the linac pulse rate is severely limited by the lengthy times required to count these very late neutrons. If detection of the prompt component can be achieved, up to 150 times more neutrons can be detected in each pulse and pulse rate can be increased by more than 10 fold, giving a net sensitivity gain of 1500 while using the same detection array and linac.
Abstract:
A direct ion storage (DIS) radiation detector or dosimeter has a design that is easy and low cost to manufacture using semiconductor processing techniques. The detectors include internal communications interfaces so they are easy to read. Different interfaces, including wired, e.g. USB ports, and wireless interfaces, may be used, so that the dosimeters may be read over the internet. The detectors can thus be deployed or used in a variety of detection systems and screening methods, including periodic or single time screening of people, objects, or containers at a location by means of affixed dosimeters; screening of objects, containers or people at a series of locations by means of affixed dosimeters, and surveillance of an area by monitoring moving dosimeters affixed to people or vehicles.
Abstract:
In a particle beam therapy system which scans a particle beam and irradiates the particle beam to an irradiation position of an irradiation subject and has a dose monitoring device for measuring a dose of the particle beam and an ionization chamber smaller than the dose monitoring device, the ionization chamber measuring a dose of a particle beam passing through the dose monitoring device, the dose of the particle beam irradiated by the dose monitoring device is measured; the dose of the particle beam passing through the dose monitoring device is measured by the small ionization chamber; and a correction coefficient of the dose measured by the dose monitoring device corresponding to the irradiation position is found based on the dose of the particle beam measured by the small ionization chamber.
Abstract:
A method is disclosed for determining individual quantum absorption events in a radiation converter which counts quanta. In at least one embodiment of the method, temporally continuous analog-to-digital conversion of electrical signals generated by a quantum absorption event to a digital signal is carried out first of all by the radiation converter. The digital signal is then processed to determine the number of quanta of the underlying quantum absorption event absorbed in the radiation converter.
Abstract:
A penetration ionization chamber includes a chamber, two outer electrode plates and a center electrode plate. The center electrode plate is disposed at the center of the chamber, and signals produced in the chamber can be collected completely by the center electrode plate to avoid signal losses and improve the accuracy of the test result of the ionization chamber. The center electrode plate also can maintain a constant internal volume of the chamber and prevent a change of effective volume within the chamber due to a change of electric field and enhance the stability of the test result of the ionization chamber. A protection electrode is wrapped by an insulation pin of the electrode and the outer insulation ring to form an insulation shield that can greatly reduce current leakage of the protection electrode and improve the accuracy of the test result of the ionization chamber.