Abstract:
A security document with a first security element, which includes a first item of visually recognizable and in particular machine-readable information, and a second security element, which includes a second item of in particular machine-readable information which can be used to verify the first item of information. A method for the authentication thereof is also described.
Abstract:
A method and a security element with a front side and a rear side lying opposite the front side, wherein the security element has two or more security features, wherein a first security feature of the two or more security features has one or more first layers and a second security feature of the two or more security features has one or more second layers, wherein the first security feature and the second security feature are in particular arranged in register with each other, wherein the first security feature generates at least one first optically variable effect and the second security feature generates at least one second optically variable effect, wherein the at least one first optically variable effect has a first color and the at least one second optically variable effect has a second color, wherein the first color and the second color differ from each other, as well as a method for producing a security element.
Abstract:
The invention relates to a multi-layer body (10) and a process for the production thereof. The multi-layer body has a first layer (23) with a first surface (231) and a second surface (232) opposite the first surface (231). The first surface (231) of the first layer (23) is defined by a base plane spanned by coordinate axes x and y, wherein a large number of facet faces (50) are molded into the second surface (232) of the first layer (23) in a first area (31). Each of the facet faces (50) is determined by one or more of the parameters F, S, H, P, Ax, Ay and Az, wherein the parameters of the facet faces (50) arranged in the first area (31) are varied pseudorandomly in the first area (31) within a variation range predefined in each case for the first area of surface and wherein a reflective second layer (24) is applied to each of the facet faces.
Abstract:
The invention relates to a method for authenticating an optically variable security element (1), in particular a diffractive security element, with the steps: a) capturing an image sequence with at least one individual image of the security element (1) by means of a sensor (31), in particular a hand-held device (3), preferably a smartphone, tablet or a PDA; b) checking whether at least one predetermined item of optical information is present in at least one individual image of the image sequence.
Abstract:
A multilayer body includes a transparent first layer. In the transparent first layer, a multiplicity microlenses arranged in accordance with a microlens grid are impressed in a first region. Furthermore, the multilayer body includes a second layer, which is arranged below the first layer and in a fixed position with respect to the first layer and has a multiplicity of microimages arranged in accordance with a microimage grid and in each case in an at least regional overlap with one of the microlenses of the microlens grid for the purpose of generating a first optically variable information item. The grid pitches of the microimage grid and of the microlens grid in each case in at least one spatial direction are less than 300 μm.
Abstract:
A method for producing a volume hologram with at least one first area in a first color and at least one second area in a second color includes, providing a volume hologram layer made of a photopolymer; arranging a master with a surface structure on the volume hologram layer; exposing the master using coherent light, wherein light which is incident on at least one first partial area of the surface of the master is diffracted or reflected in the direction of the at least one first area of the volume hologram layer and light which is incident on at least one second partial area of the surface of the master is diffracted or reflected in the direction of the at least one second area of the volume hologram, and wherein the light diffracted or reflected by the first and second partial areas differs in at least one optical property.
Abstract:
The invention relates to a security element (1). The security element (1) has a viewing side and a back side that is opposite the latter. The security element comprises at least one luminous layer (2) that can provide light (20), and at least one mask layer (4) that, when the security element (1) is viewed from the viewing side, is arranged in front of the at least one luminous layer (2). The at least one mask layer (4) has at least one opaque region (5) and at least two transparent openings (41, 42). The at least two transparent openings (41, 42) has a substantially higher transmittance than the at least one opaque region (5) in respect of light (20) provided by the at least one luminous layer (2), preferably a transmittance that is at least 20% higher, particularly preferably a transmittance that is at least 50% higher.
Abstract:
The invention relates to a multi-layer body (1) comprising a first layer (13) having a multiplicity of first zones (21), which are respectively separated from one another by one or a plurality of transparent second zones (22). The multi-layer body has a second layer (14) composed of a transparent material, said second layer being arranged below the first layer (13), and a reflection layer (15) arranged below the second layer (14). The second layer (14) has a multiplicity of third zones (23), in each of which a microstructure (17) is impressed into the interface—facing away from the first layer—between the second layer (14) and the reflection layer, which is covered with the reflection layer (15). Each of the microstructures (17) is configured such that it reflects back and/or diffracts back light incident perpendicularly with respect to the plane spanned by the first layer from the direction of the first layer in the region of the respective third zone (23) onto a region of the first layer whose area is smaller than the area of the respective third zone (23) by at least a factor of 10. The microstructures (17) are arranged in accordance with a microstructure grid having a distance between adjacent microstructures in a second spatial direction of less than 300 μm.
Abstract:
The invention relates to a security element (1). The security element (1) has a viewing side and a back side that is opposite the latter. The security element comprises at least one luminous layer (2) that can emit light (20), and at least one mask layer (4) that, when the security element (1) is viewed from the viewing side, is arranged in front of the at least one luminous layer (2). The at least one mask layer (4) has at least one opaque region (5) and at least two transparent openings (41, 42). The at least two transparent openings (41, 42) has a substantially higher transmittance than the at least one opaque region (5) in respect of light (20) emitted by the at least one luminous layer (2), preferably a transmittance that is at least 20% higher, particularly preferably a transmittance that is at least 50% higher.
Abstract:
A description is given of a method for joining a first and a second film web (2, 2′) of a transfer film or laminating film, wherein the film webs (2, 2′) comprise a thermoplastic carrier film (21) and a decorative layer (23). Formed between the first and second film webs (2, 2′) is a common joining portion (3), in which the first and second film webs (2, 2′) are joined to each other by a welding process. A device for carrying out the method is also described.