Abstract:
A 3D imaging optoelectronic module intended to be fixed to an image-forming device comprises: an optoelectronic sensor comprising a package with a chip electrically connected to a stack of at least one printed circuit board, the sensor and stack assembly molded in a resin and having faces according to Z with electrical interconnection tracks of the printed circuit boards. It comprises a thermally conductive rigid cradle in the form of a frame having a reference surface according to X, Y and: on a top surface: reference points intended to center and align the image-forming device in relation to the reference surface, fixing points to allow the fixing of the image-forming device, and an inner bearing surface having bearing points of the sensor adjusted to center and align the chip in relation to the reference surface.
Abstract:
The present invention relates to label, device, system and method for sorting bolts, bars, pins, studs, dowels, screws or the like (collectively and individually described herein as a bolt). The bolts are being characterized by a first and a second dimension. The identification system comprises a color chart defining all ten numerals and most commonly used bolt diameters corresponding to various colors and an identification label. The identification label comprises a main section and at least one other section being both adapted to receive at least one color and/or a numeral. Each combination of a color and a numeral being defined by the color chart. The combination of colors and/or numerals of the main section defines the first dimension of the bolt and the combination of colors and/or numerals of the at least one other section defines the second dimension of the bolt.
Abstract:
A 3D electronic module including, in a direction referred to as the vertical direction, a stack of electronic dice, each die including at least one chip provided with interconnect pads, this stack being attached to an interconnect circuit for the module provided with connection bumps, the pads of each chip being connected by electrical bonding wires to vertical buses that are themselves electrically linked to the interconnect circuit for the module, a bonding wire and the vertical bus to which it is linked forming an electrical conductor between a pad of a chip and the interconnect circuit, wherein each electrical bonding wire is linked to its vertical bus by forming, in a vertical plane, an oblique angle and in that the length of the bonding wire between a pad of a chip of one die and the corresponding vertical bus is different than the length of the bonding wire between one and the same pad of a chip of another die and the corresponding vertical bus, and this is obtained by wiring the bonding wire in a non-rectilinear manner to compensate for the difference in vertical length of the vertical bus from one die to the other, such that the electrical conductor between the pad of a chip of one die and the interconnect circuit, and the electrical conductor between the same pad of a chip of the other die and the interconnect circuit, are the same length.
Abstract:
A method of collective fabrication of 3D electronic modules, each 3D electronic module comprising a stack of at least two, surface transferable, ball grid electronic packages, tested at their operating temperature and frequency comprises: a step of fabricating reconstituted wafers, each reconstituted wafer being fabricated according to the following sub-steps in the following order: A1)) the electronic packages are placed on a first sticky skin, balls side, B1) molding of the electronic packages in the resin and polymerization of the resin, to obtain the intermediate wafer, C1) thinning of the intermediate wafer on the face of the intermediate wafer opposite to the balls, D1) removal of the first sticky skin and placing of the intermediate wafer on a second sticky skin, side opposite to the balls, E1) thinning of the intermediate wafer on the balls side face, F1) formation of a balls side redistribution layer, G1) removal of the second sticky skin to obtain a reconstituted wafer of smaller thickness than the original thickness of the electronic packages, several reconstituted wafers having been obtained on completion of the previous sub-steps, stacking of the reconstituted wafers, dicing of the stacked reconstituted wafers to obtain 3D modules.
Abstract:
A power converter having a parallel resonant circuit, includes an inverter, a resonant circuit, a transformer comprising a primary circuit and a secondary circuit, control means for the inverter, the inverter being connected to the resonant circuit, which is intended to be connected to an output load via the transformer, the power converter wherein the inverter comprises a first half-bridge and a second half-bridge in parallel with the first half-bridge, a first inductor between the first half-bridge and the resonant circuit, a second inductor between the second half-bridge and the resonant circuit, and in that the first and second inductors have the same inductance and are coupled in the opposite direction to one another.
Abstract:
The present invention relates to label, device, system and method for sorting bolts, bars, pins, studs, dowels, screws or the like (collectively and individually described herein as a bolt). The bolts are being characterized by a first and a second dimension. The identification system comprises a color chart defining all ten numerals and most commonly used bolt diameters corresponding to various colors and an identification label. The identification label comprises a main section and at least one other section being both adapted to receive at least one color and/or a numeral. Each combination of a color and a numeral being defined by the color chart. The combination of colors and/or numerals of the main section defines the first dimension of the bolt and the combination of colors and/or numerals of the at least one other section defines the second dimension of the bolt.
Abstract:
A process for manufacturing at least one 3D electronic module each comprises a stack of electronic packages and/or printed wiring boards, wherein a stack is placed on an electrically interconnecting system comprising metal leads each having two ends. The process comprises the following steps: starting with a lead frame that comprises metal leads, folding by about 180° the leads in order to obtain what is referred to as an internal frame portion including the folded ends, which are intended to be molded, the other portion, which is what is referred to as an external portion, including the unfolded exterior ends, the two ends of each lead being intended to emerge from the 3D module on a given face cut along Z; depositing on the leads a metal coating; placing the external portion of the frame between two, an upper and lower, protective elements while leaving the internal portion free, and placing the frame and the protective elements on a carrier; placing each stack equipped each with exterior interconnection tabs so as to superpose the exterior tabs on the internal portion; molding, in a resin, the stack, the exterior tabs and the internal portion and thereby partially covering the upper protective element; cutting the resin and thereby leaving flush conductive sections of the exterior tabs and of the ends of the leads and removing the resin from the upper protective element; metallizing the cut faces; removing the carrier; and removing the protective elements in order to expose the leads of the external portion.
Abstract:
An existing two-dimensional search engine app (“2D Search App”) is transformed into a search engine that can present three-dimensional results (“3D Search App”), allowing the presentation of 3D sites and objects on a mobile device through a mobile App in communication with a central server. The client is capable of performing 3D rendering in accordance with the instructions received from the server. The client also interacts with the server to send and retrieve other data, including requests, instructions and text, images or video. The server is capable of converting 3D models into instructions which can be sent to the client, thereby allowing the client to reproduce the 3D model in the mobile device for viewing. The invention finds application in a wide range of fields, including fashion, retail outlets, and product demonstration and sales.
Abstract:
A process for manufacturing at least one 3D electronic module each comprises a stack of electronic packages and/or printed wiring boards, wherein a stack is placed on an electrically interconnecting system comprising metal leads each having two ends. The process comprises the following steps: starting with a lead frame that comprises metal leads, folding by about 180° the leads in order to obtain what is referred to as an internal frame portion including the folded ends, which are intended to be moulded, the other portion, which is what is referred to as an external portion, including the unfolded exterior ends, the two ends of each lead being intended to emerge from the 3D module on a given face cut along Z; depositing on the leads a metal coating; placing the external portion of the frame between two, an upper and lower, protective elements while leaving the internal portion free, and placing the frame and the protective elements on a carrier; placing each stack equipped each with exterior interconnection tabs so as to superpose the exterior tabs on the internal portion; moulding, in a resin, the stack, the exterior tabs and the internal portion and thereby partially covering the upper protective element; cutting the resin and thereby leaving flush conductive sections of the exterior tabs and of the ends of the leads and removing the resin from the upper protective element; metallizing the cut faces; removing the carrier; and removing the protective elements in order to expose the leads of the external portion.
Abstract:
The field of the invention is that of producing 3D electronic modules, compatible with components operating beyond 1 GHz. The invention relates to a 3D electronic module featuring an interconnection between a horizontal conductor and a vertical conductor to which it is connected exhibits, in a vertical plane, a non-zero curvature. It also relates to the associated production process.