Abstract:
A light-emitting package structure is provided, including an encapsulant, an light-emitting component embedded the encapsulant and having a light-emitting side and a non-emitting side opposing the light-emitting side, a dam embedded and exposed from the encapsulant, and a phosphor layer covering the light-emitting side and the dam. The non-emitting side has a plurality of electrodes. Since the heat generated by the phosphor layer can be transmitted to an outside region of the light-emitting package structure through the dam, the etiolation of the encapsulant can thus be prevented. A method of fabricating the light-emitting package structure is also provided.
Abstract:
A charged powder supply device is disclosed. A plurality of charged powder particles are disposed on an upper side of a carrier and at least an action source is positioned at a lower side of the carrier for acting on the carrier so as to vibrate the charged powder particles on the upper side of the carrier. As such, the vibrated charged powder particles are attached to objects to be coated, such as LEDs, under the effect of an electric field so as to form a powder layer, such as a phosphor layer. Since there are no other external forces that affect the moving direction of the charged powder particles, the powder layer can be uniformly formed on the objects.
Abstract:
A method for forming a phosphor material on a surface of a target is provided, which includes the steps of: providing a chamber for receiving the phosphor material constituted by a plurality of particles, wherein a grid is disposed on or beneath a surface constituted by the phosphor material in the chamber, and the grid has a plurality of fine lines SN each having opposite first and second ends, N being a positive integer greater than 1; exposing the surface of the target to the phosphor material; and creating a charge on the plurality of particles, generating an electric field between the chamber and the surface of the target and oscillating the plurality of fine lines, so as to drive the plurality of particles toward the surface of the target and to be deposited on the surface of the target.
Abstract:
A method for dispensing powder includes: providing a device for dispensing powder, the device including a framework, warps connected to the framework, a trough for receiving powder, an actuating member for displacing at least one of the framework and the trough, and an action source for the powder to be detached from the warps and dispensed on an object; supplying the powder to the warps and generating an electric field for the powder to carry an electric charge and become charged powder; and providing a force, by the action source, to at least one of the framework and the warps for the charged powder to be detached from the warps, the charged powder moving dependent on the electric field and being dispensed on the object. The warps have equal amounts of charged powder carried thereon, allowing the charged powder to be distributed evenly.
Abstract:
The present disclosure provides a method of manufacturing a package structure. The method includes: providing a plurality of conductive portions and a light emitting element; encapsulating the light emitting element and the conductive portions by an encapsulant with a lateral surface of the light emitting element electrically insulated from the conductive portions; electrically connecting the light emitting element to the conductive portions by a conductive element. Accordingly, several methods can be selected to form the conductive element with no conventional limitations. The present disclosure further provides a package structure and a carrier.
Abstract:
A package structure is provided, which includes: a light emitting element having a first surface, a second surface opposite to the first surface, and a side surface adjacent to and connected with the first surface and the second surface; a fluorescent layer covering the first surface and the side surface of the light emitting element; a transparent layer covering the fluorescent layer with an inclined surface formed at an outer side of the transparent layer; and a reflective layer formed on the inclined surface and covering an outer side of the fluorescent layer. Therefore, light can be prevented from leakage from the outer side of the fluorescent layer. A method for fabricating the package structure is also provided.
Abstract:
A charged powder supply device is disclosed. A plurality of charged powder particles are disposed on an upper side of a carrier and at least an action source is positioned at a lower side of the carrier for acting on the carrier so as to vibrate the charged powder particles on the upper side of the carrier. As such, the vibrated charged powder particles are attached to objects to be coated, such as LEDs, under the effect of an electric field so as to form a powder layer, such as a phosphor layer. Since there are no other external forces that affect the moving direction of the charged powder particles, the powder layer can be uniformly formed on the objects.
Abstract:
A method of manufacturing a light-emitting package structure is provided. The method includes disposing at least one light emitting element on a carrier and forming a reflective material. The light emitting element has opposite first and second sides and a plurality of third sides connected to the first side and the second side. The light emitting element is disposed on the carrier via the second side. The reflective material is formed on the third side of the light emitting element, so as to form a reflective film.
Abstract:
A charged powder supply device is disclosed. A plurality of charged powder particles are disposed on an upper side of a carrier and at least an action source is positioned at a lower side of the carrier for acting on the carrier so as to vibrate the charged powder particles on the upper side of the carrier. As such, the vibrated charged powder particles are attached to objects to be coated, such as LEDs, under the effect of an electric field so as to form a powder layer, such as a phosphor layer. Since there are no other external forces that affect the moving direction of the charged powder particles, the powder layer can be uniformly formed on the objects.
Abstract:
A molded substrate is provided, including: a release film; and a plurality of phosphor particles formed on the release film, wherein the phosphor particles have gaps therebetween. A method of manufacturing a package structure is also provided, including: disposing at least one light emitting element on a carrier; forming a transparent adhesive layer on a surface of the light emitting element; disposing the molded substrate on the transparent adhesive layer with the phosphor particles disposed between the transparent adhesive layer and the release film; filling the transparent adhesive layer into the gaps of the phosphor particles to form a phosphor layer; and removing the release film, so as to obtain an even phosphor layer.