Abstract:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.
Abstract:
Structure mounted airbag assemblies and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present disclosure can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag assembly within the cavity, and an inflator operably coupled to the airbag assembly. The airbag assembly can include an airbag configured to deploy through the opening of the housing during a crash event. The airbag system can further include a door removably positioned across the opening and configured to move away from the opening during airbag deployment. The housing can be affixed to an interior portion of an aircraft, forward of and offset from an aircraft seat.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
The present disclosure describes apparatuses, devices and systems for attaching seatbelts to anchoring structures in aircraft and other vehicles. In some embodiments, such apparatuses include a modular connector having a base configured to be attached to an anchoring structure, a body configured to be attached to a seatbelt, and an annular lock configured to releasably couple the body to the base. In these embodiments, the body carries the lock adjacent to an aperture configured removably receive the base. When the body is pressed over the base, the base passes into the aperture and contacts the annular lock, expanding the lock outwardly around the base. The base continues moving though the aperture in the body until the lock retracts into a groove in base, thereby releasaby locking the body to the base.
Abstract:
A system for testing a number of electronic module assemblies (EMAs) that control one or more personal restraint systems. A programmed processor with a computer system transmits signals that instruct the EMAs to perform a diagnostic self-test. The results of the self-test are received by the computer system and stored in a computer readable memory. In one embodiment, the computer system is a cabin management computer system for use on an aircraft.
Abstract:
Various embodiments of seat harness pretensioning devices for use in land, air, and sea vehicles are described herein. In one embodiment, a seat unit for use in a military land vehicle or helicopter includes a stroking device that enables the seat to move downwardly in response to sudden movement. The seat unit also includes a seat belt or harness that extends around the occupant in the seat. Sudden movement of the seat in response to an explosion or hard landing causes a tensioning system to automatically pretension the seat harness.
Abstract:
Seat belt web retractors having web locking mechanisms are described herein. In some embodiments, a seat belt web retractor includes an inertial locking mechanism operably coupled to a spool about which a seat belt web is wound. The web retractor further includes a web locking mechanism operably coupled to the inertial locking mechanism. The web locking mechanism can include a driving member that is actuated by engagement of the inertial locking mechanism with the web spool in response to rapid extraction of the web from the retractor. Actuation of the driving member drives first and second clamping portions toward each other, thereby clamping the web in between the clamping members and restraining the web from further movement out of the retractor.
Abstract:
Occupant restraint systems for use in aircraft and other vehicles are described herein. In some embodiments, the occupant restraint systems include an under-seat airbag positioned below a seat cushion having a separation feature extending laterally therethrough. The separation feature enables a front cushion portion to move upwardly and away from a seat pan by a greater distance than a rear cushion portion upon inflation of the under-seat airbag, thereby favorably positioning the seat occupant's thighs relative to the seat occupant's torso.
Abstract:
Multi-chamber airbag systems for use in aircraft and other vehicles are described herein. In some embodiments, an occupant restraint system includes a multi-chamber airbag that deploys from an occupant restraint (e.g., a lap seat belt) in an aircraft. The multi-chamber airbag can include a first portion that inflates generally upward in front of the occupant's torso, and a second portion that inflates in front of the first portion. The first portion and/or the second portion can include multiple chambers (e.g., generally cylindrical-shaped chambers) that, when inflated, provide the airbag with a shape and/or contact surfaces which can help to maintain the position of the airbag between the occupant and a strike object or hazard. In other embodiments, multi-chamber airbags configured in accordance with the present disclosure can me mounted to a structure (e.g., a monument, console, seat back, etc.) positioned generally in front of the occupant. The structure-mounted airbag can deploy generally toward the occupant in the event of a vehicle impact or other potentially harmful event to protect the occupant from impact injury.