Abstract:
A method for calculating the parameters of a resist model of an IC manufacturing process is provided. Accordingly, a function representative of the target design convoluted throughout the whole target design with a kernel function compounded with a deformation function with a shift angle. The deformation function is replaced by its Fourier series development, the order of which is selected so that the product of convolution is invariant through rotations within a tolerance of the corrections to be applied to the target design. Alternatively, the product of convolution may be decomposed into basic kernel functions selected varying by angles determined so that a deformation function for a value of the shift angle can be projected onto a couple of basic kernel functions the angles of which are proximate to the shift angle.
Abstract:
A method for transferring a fractured pattern decomposed into elementary shapes, onto a substrate by direct writing by a particle or photon beam, comprises a step of identifying at least one elementary shape of the fractured pattern, called removable elementary shape, whose removal induces modifications of the transferred pattern within a preset tolerance envelope; a step of removing the removable shape or shapes from the fractured pattern to obtain a modified fractured pattern; and an exposure step, comprising exposing the substrate to a plurality of shots of a shaped particle or photon beam, each shot corresponding to an elementary shape of the modified fractured pattern. A computer program product for carrying out such a method is provided.
Abstract:
An IC manufacturing model is disclosed, wherein input variables and an output variable are measured using a calibration set of patterns. The model can or cannot include a PSF. The output variable may be a dimensional bias between printed patterns and target patterns or simulated patterns. It can also be a Threshold To Meet Experiments. The input variables may be defined by a metric which uses kernel functions, preferably with a deformation function which includes a shift angle and a convolution procedure. A functional or associative relationship between the input variables and the output variable is defined. Preferably this definition includes normalization steps and interpolation steps. Advantageously, the interpolation step is of the kriging type. The invention achieves a much more accurate modeling of IC manufacturing, simulation or inspection processes.
Abstract:
This method for estimating patterns (M′PF,D′PF) to be printed by means of electron-beam lithography, comprises the following steps: printing (100), in a resin, a set of calibration patterns (MCF, DCF); measuring (120) characteristic dimensions (CD) of this set; supplying an estimation (140) of the point spread function (PSF) based on the characteristic dimensions (CD) measured; estimating (160) the patterns (M′PF,D′PF) to be printed by convoluting the point spread function (PSF) supplied with an initial value of the patterns (MPF,DPF).Furthermore, each calibration pattern printed includes a central zone exposed to the electron beam and a plurality of surrounding concentric zones with rotational symmetry. The characteristic dimensions measured are characteristic dimensions (CD) of the central zones of the patterns. The estimation of the point spread function (PSF) is calculated by inverting analytical modelling of the effect, on these characteristic dimensions, of applying the first point spread function portion (PSFBE) characterising electrons back-scattered by the substrate to the set of calibration patterns (MCF, DCF).
Abstract:
A method for projecting an electron beam used notably in lithography by direct or indirect writing as well as in electron microscopy, is provided. Notably for critical dimensions or resolutions of less than 50 nm, the proximity effects created by the forward and backward scattering of the electrons of the beam in interaction with the target must be corrected. This is traditionally done using the convolution of a point spread function with the geometry of the target. In the prior art, said point spread function uses Gaussian distribution laws. At least one of the components of the point spread function is a linear combination of Voigt functions and/or of functions approximating Voigt functions, such as the Pearson VII functions. In certain embodiments, some of the functions are centered on the backward scattering peaks of the radiation.
Abstract:
A method for calculating the parameters of a resist model of an IC manufacturing process is provided. Accordingly, a function representative of the target design convoluted throughout the whole target design with a kernel function compounded with a deformation function with a shift angle. The deformation function is replaced by its Fourier series development, the order of which is selected so that the product of convolution is invariant through rotations within a tolerance of the corrections to be applied to the target design. Alternatively, the product of convolution may be decomposed into basic kernel functions selected varying by angles determined so that a deformation function for a value of the shift angle can be projected onto a couple of basic kernel functions the angles of which are proximate to the shift angle.
Abstract:
A method for transferring a fractured pattern decomposed into elementary shapes, onto a substrate by direct writing by a particle or photon beam, comprises a step of identifying at least one elementary shape of the fractured pattern, called removable elementary shape, whose removal induces modifications of the transferred pattern within a preset tolerance envelope; a step of removing the removable shape or shapes from the fractured pattern to obtain a modified fractured pattern; and an exposure step, comprising exposing the substrate to a plurality of shots of a shaped particle or photon beam, each shot corresponding to an elementary shape of the modified fractured pattern. A computer program product for carrying out such a method is provided.
Abstract:
A method of generating data relative to the writing of a pattern by electronic radiation initially includes the provision of a pattern to be formed which form the work pattern with a single external envelope. The work pattern is broken down into a set of elementary outlines, each including a single external envelope. A set of insolation conditions is defined to model each elementary outline. An irradiated simulation pattern is calculated from the sets of insolation conditions associated with the sets of elementary outlines. The simulation pattern is compared with the pattern to be formed. If the simulation pattern is not representative of the pattern to be formed, shift vectors are calculated. The shift vectors are representative of different intervals existing between the two patterns. The external envelope of the pattern to be formed is modified from displacement vectors determined from the shift vectors. A new iteration is carried out.
Abstract:
A method to easily determine parameters of a second process for manufacturing from parameters of a first process is provided. Metrics representative of differences between the first process and the second process are computed from a number of values of the parameters, which can be measured for the first process and the second process on a calibration layout, or which can be determined from pre-existing values for layouts or reference data for the first process and the second process by an interpolation/extrapolation procedure. A set of metrics are selected so that their combination gives a precise representation of the differences between the first process and the second process in all areas of a target design. Advantageously, the metrics are calculated as a product of convolution of the target design and a compound of a kernel function and a deformation function.
Abstract:
A method for projecting an electron beam onto a target includes correction of the scattering effects of the electrons in the target. This correction is made possible by a calculation step of a point spread function having a radial variation according to a piecewise polynomial function.