Abstract:
A system includes a radiation sensor configured to direct a field of view toward at least one conduit along a fluid flow path into a heat exchanger. The radiation sensor is configured to output a signal indicative of a temperature of the at least one conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, to compare the temperature to a threshold range, and to adjust a fluid flow through the fluid flow path or the at least one conduit if the temperature deviates from the threshold range.
Abstract:
Described herein are embodiments of methods and systems of communicating with smart appliances through a smart grid and smart meter infrastructure. In one aspect, a method is described comprising a smart meter connected to a first network receiving via the first network registration information for an appliance operably connected to the first network, wherein the registration information includes a unique identifier for the appliance; transmitting at least a portion of the registration information and a smart meter identifier that uniquely identifies the smart meter to a second computing device connected to a second network; receiving, by the second computing device, update information for the appliance; transmitting, by the second computing device, the update information to the smart meter via the second network using the unique identifier for the device and the smart meter identifier; transmitting, by the smart meter, the update information to the appliance; and updating the appliance with the update information.
Abstract:
Embodiments of the invention can provide systems and methods for adjusting clearances in a turbine. According to one embodiment, there is disclosed a turbine system. The system may include one or more turbine blades, a turbine casing encompassing the one or more turbine blades, a thermoelectric element disposed at least partially about the turbine casing, a cooling system in communication with the thermoelectric element, and a controller in communication with the cooling system and the thermoelectric element. The controller may be operable to control the expansion or contraction of the turbine casing by heating or cooling at least a portion of the turbine casing with the thermoelectric element and by adjusting the cooling system such that a clearance between the one or more turbine blades and the turbine casing is adjusted.
Abstract:
A method of distributing charge capacity to electric vehicles in a charging system that includes a solar charge capacity generated locally. The method may include: determining a requested charge for the plurality of electric vehicles, calculating a requested charge time, the solar charge capacity comprising the total charging capacity of the charging system via solar generated energy; calculating a charge time capacity, the charge time capacity comprising the available charge time of the charging system; comparing the requested charge to the solar charge capacity; comparing the requested charge time to the charge time capacity; and if it is determined that either the requested charge is greater than the solar charge capacity or the requested charge time is greater than the charge time capacity, auctioning the solar charge capacity to operators of the plurality of electric vehicles.
Abstract:
Described herein are embodiments of methods and systems of communicating with smart appliances through a smart grid and smart meter infrastructure. In one aspect, a method is described comprising a smart meter connected to a first network receiving via the first network registration information for an appliance operably connected to the first network, wherein the registration information includes a unique identifier for the appliance; transmitting at least a portion of the registration information and a smart meter identifier that uniquely identifies the smart meter to a second computing device connected to a second network; receiving, by the second computing device, update information for the appliance; transmitting, by the second computing device, the update information to the smart meter via the second network using the unique identifier for the device and the smart meter identifier; transmitting, by the smart meter, the update information to the appliance; and updating the appliance with the update information.
Abstract:
A system includes a radiation detector array configured to direct a field of view toward multiple conduits within a fluid flow path from a turbine into a heat exchanger. The radiation detector array is configured to output a signal indicative of a multi-dimensional temperature profile of the fluid flow path based on thermal radiation emitted by the conduits. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to determine a temperature variation across the fluid flow path based on the signal, and to compare the temperature variation to a threshold value.
Abstract:
A system includes a radiation detector array directed toward a fluid flow into a compressor. The radiation detector array is configured to output a signal indicative of a two-dimensional temperature profile of the fluid flow. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to detect a temperature variation across the fluid flow based on the signal.
Abstract:
Various embodiments are described herein for a system and method for blindzone obstacle detection for a host vehicle. The system comprises a sensor array configured to generate measurement data for a blindzone of the host vehicle; a blindzone object detector having at least two detectors that are coupled to the sensor array to process the measurement data and generate outputs which are then combined to form a final detection value that is used to detect an object in the blindzone of the host vehicle. An indicator can also be coupled to the blindzone object detector to generate an indication of object detection in the blindzone.
Abstract:
Embodiments of the invention can provide systems and methods for adjusting clearances in a turbine. According to one embodiment, there is disclosed a turbine system. The system may include one or more turbine blades, a turbine casing encompassing the one or more turbine blades, a thermoelectric element disposed at least partially about the turbine casing, a cooling system in communication with the thermoelectric element, and a controller in communication with the cooling system and the thermoelectric element. The controller may be operable to control the expansion or contraction of the turbine casing by heating or cooling at least a portion of the turbine casing with the thermoelectric element and by adjusting the cooling system such that a clearance between the one or more turbine blades and the turbine casing is adjusted.
Abstract:
Certain embodiments of the invention may include systems, methods, and apparatus for detecting theft and status of electrical power. According to an example embodiment of the invention, a method is provided for detecting theft and status of electrical power. The method can include monitoring switch state of a main circuit breaker, monitoring load-side voltage, monitoring load current, determining one or more conditions associated with power usage based at least in part on one or more of the monitored switch state, the monitored load-side voltage, or the monitored load current and transmitting information representing the one or more determined conditions.