Abstract:
Catalysts for oxidative esterification can be used, for example, for converting (meth)acrolein to methyl (meth)acrylate. The catalysts are especially notable for high mechanical and chemical stability even over very long time periods, including activity and/or selectivity relatively in continuous operation in media having even a small water content.
Abstract:
The present invention relates to a process for preparing methyl methacrylate by a direct oxidative esterification of methacrolein with oxygen and methanol, which is conducted in the liquid phase at a pressure of 2 to 100 bar with a gold catalyst. According to the invention, the liquid phase is withdrawn continuously from the reactor and optionally enriched with oxygenous gas, the pH, after the withdrawal, is adjusted to a pH between 5 and 9 by means of addition of a basic solution and this liquid phase is conducted back into the reactor again to an extent of at least 50%.
Abstract:
Catalysts for oxidative esterification can be used, for example, fro converting (meth)acrolein to methyl (meth)acrylate. The catalysts are especially notable for high mechanical and chemical stability even over very long time periods, including activity and/or selectivity relatively in continuous operation in media having even a small water content.
Abstract:
The present invention relates to a process for preparing methyl methacrylate by a direct oxidative esterification of methacrolein with oxygen and methanol, which is conducted in the liquid phase at a pressure of 2 to 100 bar with a gold catalyst. According to the invention, the liquid phase is withdrawn continuously from the reactor and optionally enriched with oxygenous gas, the pH, after the withdrawal, is adjusted to a pH between 5 and 9 by means of addition of a basic solution and this liquid phase is conducted back into the reactor again to an extent of at least 50%.