Abstract:
A process for the synthesis of 3,6-dihydro-1,3,5-triazine derivatives is claimed wherein a biguanid is reacted with acetaldehyde in the presence of an inorganic and/or organic base. The process can be carried out at mild and therefore economical reaction conditions.
Abstract:
The invention relates to a method for producing chiral organic compounds by asymmetric catalysis, using ionic catalysts comprising a chiral catalyst anion. The claimed method is suitable for reactions which are carried out over cationic intermediate stages, such as iminium ions or acyl pyridinium ions. The invention enables the production of chiral compounds with high ee values, that until now could only be obtained by means of costly purification methods.
Abstract:
The invention relates to a method for producing chiral organic compounds by asymmetric catalysis, using ionic catalysts comprising a chiral catalyst anion. The claimed method is suitable for reactions which are carried out over cationic intermediate stages, such as iminium ions or acyl pyridinium ions. The invention enables the production of chiral compounds with high ee values, that until now could only be obtained by means of costly purification methods.
Abstract:
Carbonyl compounds of the formula (II), wherein R1 and R2 are as defined herein, react in the presence of an amine with carboxylic acid derivatives of the formula (II), wherein R3 and EWG are also as defined herein, to give α,β-unsaturated compounds of the formula (I) according to the following scheme: It is possible under mild reaction conditions to obtain unsaturated esters with high (E) stereoselectivity. The reaction typically proceeds at room temperature or lower without particular requirements such as inert gas, exclusion of moisture, heat, etc., being made. The only by-products obtained are CO2 and water.
Abstract:
A self-immolative dendrimer capable of releasing all of its tail units upon a single cleavage event, methods of synthesizing same and uses thereof are disclosed.
Abstract:
Catalytic antibodies, including 38C2 and 33F12, are capable of efficiently catalyzing a wide variety of ketone-ketone, ketone-aldehyde, aldehyde-ketone, and aldehyde-aldehyde intermolecular aldol reactions, and in some cases to catalyze their subsequent dehydration to yield aldol condensation products. A number of intramolecular aldol reactions have also been defined. Catalysis of all intramolecular aldol reactions examined yields the corresponding condensation products.
Abstract:
Catalytic antibodies, including 38C2 and 33F12, are capable of efficiently catalyzing a wide variety of ketone-ketone, ketone-aldehyde, aldehyde-ketone, and aldehyde-aldehyde intermolecular aldol reactions, and in some cases to catalyze their subsequent dehydration to yield aldol condensation products. A number of intramolecular aldol reactions have also been defined. Catalysis of all intramolecular aldol reactions examined yields the corresponding condensation products.
Abstract:
Chiral disulfonimides having the formula I to III, wherein at least one of the groups A and B in the compound of formula I, C and D of the compound in formula II, and E and F of the compound in formula III is a chiral group, or E and F together form a chiral backbone, X is C, Si, O, N or S, and n is 0, 1, 2, 3, 4, 5 or 6, where n is >1 only if X is C, and G is as defined herein, and to the organic salts, metal salts and metal complexes thereof, are suited as NMR shift reagents and as reagents for racemate splitting, and also as chiral Brønsted acid catalysts or chiral Lewis acid catalysts for activating ketones, aldehydes and alkenes, and also as catalysts in the organic synthesis.
Abstract:
The present invention provides a compound that includes an active therapeutic agent attached to a blocking moiety that is sensitive to the catalytic action of molecules having retro-aldol and retro-Michael catalytic activity, methods for making such compounds and methods of converting such compounds to active therapeutic agents using molecules having aldolase activity.
Abstract:
A process is claimed for the enantioselective epoxidation of α,β-unsaturated ketones, in which a compound of the general formula I, is reacted with an oxidizing agent to form α,β-epoxy ketones of the general formula II, in which R1, R2, R3 are as defined above. The α,β-epoxy ketones of the general formula II can be obtained in good yields and outstanding enantioselectivities from α,β-unsaturated ketones of the general formula I by epoxidation with hydrogen peroxide in the presence of a chiral catalyst, such as amino compounds and their acid addition salts.