Abstract:
Methods, systems, and apparatus for recharging medical devices implanted within the body are disclosed. An illustrative method of recharging an implanted medical device includes delivering a charging device to a location adjacent to the implanted medical device, activating a charging element coupled to the charging device and transmitting charging energy to a receiver of the implanted medical device, and charging the implanted medical device using the transmitted charging energy from the charging device.
Abstract:
An implantable system for ambulatory monitoring of a high-risk heart failure patient includes a first pressure sensor implantable within an abdomen of the patient for sensing and generating an output representative of a baseline intra-abdominal pressure value of the patient and for chronically sensing and generating an output representative of an intra-abdominal pressure value of the patient at periodic intervals. At least one second implantable sensor is provided for sensing and generating an output representative of a second physiological parameter of the patient. Additionally, the system includes a processor for correlating the output of the first pressure sensor and the second physiologic sensor, and for comparing differences between the baseline intra-abdominal pressure value and subsequent intra-abdominal pressure values. The processor can reside in another implantable device or in an external device/system.
Abstract:
Implantable medical devices including an ultrasonic transducer and methods of optimizing an ultrasonic transducer of an implantable medical device are disclosed. The implantable medical device can include a housing, an ultrasonic transducer disposed within an interior of the housing, and a limiting structure configured to constrain deformation of the ultrasonic transducer. The limiting structure can include a separate structure coupled to the housing, or can comprise a resonant portion of the housing itself. During operation, the ultrasonic transducer is configured to communicate at a frequency at or near a resonant frequency of the housing.
Abstract:
An implantable medical device comprising a housing and a limiting structure defining a resonant region in the housing. An acoustic transducer is connected to the limiting structure and extends into the resonant region so that the resonant region mechanically amplifies the deformation of the acoustic transducer at a resonant frequency. An implantable medical device comprising a housing and a limiting structure defining a resonant region in the housing. An acoustic transducer having the shape of a beam is mechanically coupled to the limiting structure and partially extends into the resonant region so that the resonant region mechanically amplifies the deformation of the acoustic transducer at a resonant frequency. An implantable medical device comprising a housing, an acoustic transducer coupled to the housing, and a means for mechanically amplifying the deformation of the acoustic transducer at a resonant frequency. The means defines a resonant region in the housing.
Abstract:
Methods, systems, and apparatus for powering and/or recharging medical devices implanted within the body are described. An illustrative implantable sensor for sensing one or more physiologic parameters within a body lumen includes a housing having an exterior wall that has an inner surface and an outer surface and that defines an internal cavity. A portion of the housing includes an electrically conductive material that functions as a first electrical conductor. A flexible piezoelectric layer is disposed adjacent to a portion of the exterior wall and a second electrical conductor is disposed adjacent to the piezoelectric layer. The piezoelectric layer is configured to displace in response to periodic pressure pulses within the body lumen and generate a voltage differential between the first and second electrical conductors.
Abstract:
An acoustic energy delivery system for delivering acoustic energy to an implantable medical device (“IMD”). The system includes an IMD having a power source and an energy delivery device. The energy delivery device includes a controller and an array of ultrasonic elements electrically coupled to the controller and configured to deliver acoustic energy to the IMD. Methods of delivering acoustic energy to an IMD are also disclosed.
Abstract:
Various implantable medical device embodiments stimulate an autonomic neural target from within a pulmonary artery, and comprise at least one electrode, a power supply, a neural stimulator connected to the power supply, and an anchor structure. The neural stimulator is configured to generate a neural stimulation signal for delivery to the neural stimulation target through the at least one electrode. The anchor structure is configured to chronically and securely implant the neural stimulator, the power supply and the at least one electrode within the pulmonary artery. The anchor structure, the neural stimulator, the power supply and the at least one electrode are configured to be implanted through a pulmonary valve into the pulmonary artery. In various embodiments, the neural stimulator is configured to be operational to implement a neural stimulation protocol when chronically implanted within the pulmonary artery without a wired connection through the pulmonary valve.
Abstract:
An apparatus includes an implantable acoustic viscosity sensor configured to acoustically obtain a viscosity signal indicative of a viscosity of a fluid in contact with the viscosity sensor. A viscosity measurement circuit produces a viscosity measurement from the viscosity signal.
Abstract:
An implantable medical device comprising a housing and a limiting structure defining a resonant region in the housing. An acoustic transducer is connected to the limiting structure and extends into the resonant region so that the resonant region mechanically amplifies the deformation of the acoustic transducer at a resonant frequency. An implantable medical device comprising a housing and a limiting structure defining a resonant region in the housing. An acoustic transducer having the shape of a beam is mechanically coupled to the limiting structure and partially extends into the resonant region so that the resonant region mechanically amplifies the deformation of the acoustic transducer at a resonant frequency. An implantable medical device comprising a housing, an acoustic transducer coupled to the housing, and a means for mechanically amplifying the deformation of the acoustic transducer at a resonant frequency. The means defines a resonant region in the housing.
Abstract:
An implantable medical device comprising a housing and an ultrasonic transducer having a communication frequency coupled to a portion of the housing. The housing resonates at the communication frequency, and a casing is coupled to the housing and disposed over the ultrasonic transducer. The casing is adapted to amplify the deformation of the ultrasonic transducer in a bending mode and transfer the bending moment to the housing. An implantable medical device comprising a housing having an upper portion and a lower portion. A first ultrasonic transducer is coupled to a first connection rod and is coaxial with the first connection rod. The first ultrasonic transducer and first connection rod are interposed between the upper and lower portions such that the first ultrasonic transducer is adapted to vibrate the upper and lower portions simultaneously. A method of optimizing an ultrasonic transducer and a housing of an implantable medical device.