Abstract:
A molecular detection device for use in electrochemical detection assays includes at least two electrodes, and has a film deposited on at least one of the electrodes. The film includes a conductive polymer and conductive particles, having mean diameters between 1 and 100 nm, within the conductive polymer. Probe molecules may be attached on or to the conductive polymer, or be included in the conductive polymer. The device may be used to detect specific target molecules in a sample, for example, protein, peptide, nucleic acid or small molecule target molecules.
Abstract:
The present invention refers to a method of manufacturing a micro patterned device. The method can comprise or consist of applying a light curable epoxy resin to a mold to obtain a curable resin filled mold. In a further step a polymeric film or an epoxy resin-coated glass is applied over the curable resin filled mold. Subsequently, the curable resin filled mold to which the polymeric film or the epoxy resin-coated glass is applied is irradiated to cure the resin. In another aspect the present invention refers to a micro patterned device obtained by a method described herein.
Abstract:
A method for making high power electrochemical charge storage devices, provides for depositing an electrically conducting polymer (16), (18), onto a non-noble metal substrate (10), which has been prepared by treatment with a surfactant. Using this method, high power, high energy electrochemical charge storage devices may be fabricated with highly reproducible low cost.
Abstract:
An electrolyte system for use in an electrochemical cell such as a battery or capacitor, and which includes an aqueous electrolyte and a modifier species. The modifier should be adapted to act as a surfactant, as well as reduce oxidation of the electrode materials in the electrochemical cell. The aqueous electrolyte may be, for example, KOH, and the modifier species may be a porphine or porphine derivatives.
Abstract:
Addressable bio/chem chips include a plurality of isolated test cells, each addressable by at least two electrodes for measuring electrical characteristics of probe/test molecule interactions. In one embodiment, electrodes are located within a channel to allow for four terminal measurement. In another embodiment, electrodes are arranged in rows and columns and interconnected with electrolyte pads used as test sites. In yet another embodiment, electrodes are arranged in cells, with each cell including a counter electrode surrounded encircled by working electrodes.
Abstract:
Addressable bio/chem chips include a plurality of isolated test cells, each addressable by at least two electrodes for measuring electrical characteristics of probe/test molecule interactions. In one embodiment, electrodes are located within a channel to allow for four terminal measurement. In another embodiment, electrodes are arranged in rows and columns and interconnected with electrolyte pads used as test sites. In yet another embodiment, electrodes are arranged in cells, with each cell including a counter electrode surrounded encircled by working electrodes.
Abstract:
The present invention provides an apparatus and methods for the electrical detection of molecular interactions between a probe molecule and a protein or peptide target molecule, but without requiring the use of electrochemical or other reporters to obtain measurable signals. The methods can be used for electrical detection of molecular interactions between probe molecules bound to defined regions of an array and protein or peptide target molecules which are permitted to interact with the probe molecules.
Abstract:
The present invention provides an apparatus and methods for efficient, high-throughput electrical or electrochemical detection of biomolecules. More specifically, the invention provides an apparatus in which an independent set of electrodes is used to increase the occurrence of a desired bio-conjugation event at a test site.
Abstract:
The present invention provides a method to characterize, optimize, and control the quality and production of hydrogel media. Additionally, the present invention provides a method for determining the size, size distribution, and spatial distribution of the pores of a porous substrate. More particularly, the invention provides a method for determining the size, size distribution, and spatial distribution of the pores of a polymeric hydrogel-based substrate.
Abstract:
An electrochemical battery cell (10) including a zinc electrode (20), and may be fabricated with an electrolyte (50) system including an electrolyte active species and a modifier. The electrolyte active species is typically a metal hydroxide such as KOH or NaOH, while the modifier may be a porphine such as a metal porphine, and/or a polymeric material. The polymeric material may be, for example, a polyvinyl resin such as polyvinyl alcohol or polyvinyl acetate. The resulting electrolyte typically includes between 3 and 10 weight percent of the polyvinyl resin, 5 and 50 weight percent of the metal hydroxide, and between 1 PPM and 1 wt % of the modifier. Employing such an electrolyte in a cell including a zinc electrode results in an energy storage device having improved power density and substantially longer cycle life.