Abstract:
Disclosed herein is novel use of telbivudine for improving kidney and/or heart function of a subject suffering from a kidney disease, such as acute kidney injury (AKI) or chronic kidney disease (CKD).
Abstract:
A sensor patch, system, and method for detecting a fluid leaked from a target site of a subject are provided. The sensor patch (100) includes a first detecting unit (127), a second detecting unit (128), and a patch body (110). The first detecting unit (127) includes a first pair of sensors (120A) respectively having a first end (121A) configured to be placed approximating the target site, while the second detecting unit (128) includes a second pair of sensors (120B) respectively having a first end (121B) configured to be placed away from the target site. Each sensor includes a conductive wire (125) and an insulating sheath (126) encapsulating the conductive wire (125) in a manner that a portion of the first end (121A, 121B) of the conductive wire (125) is exposed yet without directly contacting the subject's skin. The patch body (110) has an adhesive surface (104) for securing the first and second detecting units (127, 128) to the subject. The sensor patch enhances the detection specificity.
Abstract:
A method performed using a resistive device, where the resistive device includes a substrate with an active region separated from a gate electrode by a dielectric and electrical contacts along a longest dimension of the gate electrode, the method comprising, performing one or more processes to form the resistive device, measuring a resistance between the electrical contacts, and correlating the measured resistance with a variation in one or more of the processes.
Abstract:
Provided is a method of fabricating a backside illuminated image sensor that includes providing a device substrate having a frontside and a backside, where pixels are formed at the frontside and an interconnect structure is formed over pixels, forming a re-distribution layer (RDL) over the interconnect structure, bonding a first glass substrate to the RDL, thinning and processing the device substrate from the backside, bonding a second glass substrate to the backside, removing the first glass substrate, and reusing the first glass substrate for fabricating another backside-illuminated image sensor.
Abstract:
A method performed using a resistive device, where the resistive device includes a substrate with an active region separated from a gate electrode by a dielectric and electrical contacts along a longest dimension of the gate electrode, the method comprising, performing one or more processes to form the resistive device, measuring a resistance between the electrical contacts, and correlating the measured resistance with a variation in one or more of the processes.
Abstract:
This description relates to a method for reducing CMOS Image Sensor (CIS) contact resistance, the CIS having a pixel array and a periphery. The method includes performing Physical Vapor Deposition (PVD) at a pixel contact hole area, annealing for silicide formation at the pixel contact hole area and performing contact filling. This description also relates to a method for reducing CMOS Image Sensor (CIS) contact resistance, the CIS having a pixel array and a periphery. The method includes implanting N+ or P+ for pixel contact plugs at a pixel contact hole area, performing Physical Vapor Deposition (PVD) at pixel contact hole area, annealing for silicide formation at the pixel contact hole area, performing contact filling and depositing a first metal film layer, wherein the first metal film layer links contact holes for a source, a drain, or a poly gate of a CMOS device.
Abstract:
A resistive test structure that includes a semiconductor substrate with an active region, a gate stack formed over the active region, a first electrical contact in communication with the active region on opposing sides of the gate stack, the first electrical contact providing an electrical short across a first dimension of the gate stack, and a second electrical contact in communication with the active region on the opposing sides of the gate stack, the second electrical contact providing an electrical short across the first dimension of the gate stack, the first and second electrical contacts spaced along a second dimension of the gate stack perpendicular to the first dimension.
Abstract:
Provided is a method of fabricating a backside illuminated image sensor that includes providing a device substrate having a frontside and a backside, where pixels are formed at the frontside and an interconnect structure is formed over pixels, forming a re-distribution layer (RDL) over the interconnect structure, bonding a first glass substrate to the RDL, thinning and processing the device substrate from the backside, bonding a second glass substrate to the backside, removing the first glass substrate, and reusing the first glass substrate for fabricating another backside-illuminated image sensor.
Abstract:
Provided is a method of fabricating a backside illuminated image sensor that includes providing a device substrate having a frontside and a backside, where pixels are formed at the frontside and an interconnect structure is formed over pixels, forming a re-distribution layer (RDL) over the interconnect structure, bonding a first glass substrate to the RDL, thinning and processing the device substrate from the backside, bonding a second glass substrate to the backside, removing the first glass substrate, and reusing the first glass substrate for fabricating another backside-illuminated image sensor.
Abstract:
A resistive test structure that includes a semiconductor substrate with an active region, a gate stack formed over the active region, a first electrical contact in communication with the active region on opposing sides of the gate stack, the first electrical contact providing an electrical short across a first dimension of the gate stack, and a second electrical contact in communication with the active region on the opposing sides of the gate stack, the second electrical contact providing an electrical short across the first dimension of the gate stack, the first and second electrical contacts spaced along a second dimension of the gate stack perpendicular to the first dimension.