Abstract:
Method for conditioning of an electronic microcircuit designed for the production of an electronic module which can be glued by means of a simple glue or by soldering. For this purpose the microchip has a geometric shape compatible with a recess in a card provided to accommodate it and has a means serving as a mask compatible with the card. Ultimately this mask also serves to prevent an outflow of a resin coating used to protect a chip included in this type of module. The mask is glued to a support having, on a first face, the contact area, and on a second face the mask and the chip. The mask includes a window determining the placement of the chip.
Abstract:
The invention thus concerns a coupling antenna connected to an electromagnetic wave transceiver device containing one or several integrated capacitors. This coupling antenna includes at least one screen printed turn (24) on a support (28) consisting of an insulating dielectric support and also includes a screen printed capacitor on the support, connected in parallel, thereby reducing the capacitance supplied by the capacitor(s) built into the device, so that the resulting capacitance forms a resonating circuit with the turn. The invention also concerns the fabrication process of such an antenna and the use of this antenna in a contactless or hybrid contact-contactless smart card.
Abstract:
A method ensuring continuity of management of communications sessions operated from a fourth-generation mobile terminal communicating on an IP network including at least one radio network with a plurality of base stations with which said terminal is capable of communicating, said radio network connected via access gateways to an interconnection network with communications session management application servers, the sessions of a mobile terminal being managed by one of said servers, the method including: in the event of a movement of the mobile terminal resulting in a change of access gateway, the new gateway transmits an alert message to a new management server; the new management server transmits an interrogation request to the other servers in order to recover the call context of the mobile terminal; and the new server transmits an invitation to the mobile terminal accompanied by connection parameters, such that said terminal can connect to the new server.
Abstract:
A method of manufacture of an electrical bridge including the following steps: (a) providing a first flexible electrically insulating material, (b) laminating a pattern of a second electrically conductive material, on the first material, (c) separating a strap having a connection portion formed from the pattern of electrically conductive material.
Abstract:
The invention relates to a printed circuit which is equipped with electrically conductive tracks and which can be obtained by means of gravure printing. Gravure printing can be used to obtain conductive tracks of a very small thickness, such that said tracks have a high electrical resistance. In order to reduce the electrical resistance of the tracks (30) thus obtained, the invention consists in connecting at least two first electrodes (9, 8) to opposite portions (17, 18) of the same track while the middle (19) of said track is immersed in an electrolytic bath (7). Moreover, the bath is connected to a second electrode (26) which is in turn connected to a second potential (15) having an opposite polarity to that of a first potential (14) connecting the first electrodes.
Abstract:
In order to increase the efficiency of an RFID antenna, which has been printed and then metallized, the invention consists in producing an insulating strip including at least one first recess, which is intended to receive a track or an electrically conductive connection, whereby a slope is provided at the base of the recess and connects one face of the strip with another face thereof. The first recess facilitates conductive ink printing on the insulating strip. The invention also relates to a method of producing said antenna, such that the track is printed continuously on the dielectric support. When the conductive connection is disposed between the dielectric substrate and the insulating strip, the high electric resistance caused by the absence of metallization can be compensated for by increasing the width of the insulating strip.
Abstract:
The present invention relates to a contactless smart card manufacturing process and more specifically to a manufacturing process for a contactless smart card for which the antenna is on a fibrous material such as paper. This process includes a manufacturing step to screen print the antenna onto the support, a step to bond the contacts of the chip onto the antenna support using conductive glue, and a step designed to laminate the card body onto the antenna support by hot press molding. Cutouts made in the corners of the antenna support prior to the lamination step enable the card bodies to be bonded together. The card thus obtained allows a posteriori viewing of any mechanical misuse to which it may have been subjected (extreme bending).
Abstract:
The present invention relates to a hybrid-contact contactless smart card manufacturing process and specifically a manufacturing process for hybrid-contact contactless smart card in which the antenna is on a fibrous material such as paper. This process includes a manufacturing step to screen print the antenna onto the support, a step to laminate the card body onto the antenna support by hot press molding, a step to mill a cavity in the card body opposite the side of the support bearing the screen print for housing a module comprised of a chip and a double-sided circuit and a step for inserting the module in the card. Cutouts made in the corners of the antenna support prior to the lamination step enable the card bodies to be bonded together. The card thus obtained allows a posteriori viewing of any mechanical misuse to which it may have been subjected (extreme bending).
Abstract:
A method of manufacture of an electrical bridge including the following steps: (a) providing a first flexible electrically insulating material, (b) laminating a pattern of a second electrically conductive material, on the first material, (c) separating a strap having a connection portion formed from the pattern of electrically conductive material.
Abstract:
A flexible printed circuit includes 2 insulating flexible layers, and 3 conductive layers each including electrical tracks, the conductive and the insulating layers are provided stacked in alternated fashion. Electrical tracks of 3 conductive layers are electrically connected together through respective layers of insulating substrate to form an RFID antenna.