Abstract:
A server complex (102) in a content delivery network (200) includes a central server (110), a multicast server (210), and an edge server (105). The central server delivers, with the multicast server, a content offering (120) to the edge server beginning at a predetermined time by transmitting portions (103) of content in succession, with each portion of content accompanied by an index fact datagram (204). The edge server stores each index fact datagram in an index file (215). When playing back content, the edge server retrieves an index file portion (404). When the information in the index file portion is exhausted, the edge server obtains any additional index fact datagrams (407) corresponding to any additional portions (408) of the content offering from the index file stored at the edge server.
Abstract:
A data transfer system (100) includes a data transmission device (103). The data transmission device can include a data communication circuit (206), a memory (202), and a control circuit (201) operable with the communication circuit and the memory circuit. The control circuit can transfer data (306) to a remote device, establish a sliding window (307) spanning a predetermined amount of data, and store the predetermined amount of data. In response to receiving an error message (311) identifying particular data (312) encountering errors in transfer, the control circuit can retransfer the particular data so long as the particular data is within the sliding window.
Abstract:
At least a first image, such as a motion video image, is prepared for integration with at least a second image, such as a motion video image and/or a still image. The first image may be a barker, and the second image may be a menu or programming guide. To prepare the first image for integration, a first compressed image is formed, restricted to a first region of a first image area by representing at least one segment of a first image within the first region with a reference to another segment of the first image within the first region. The second image may also be prepared for integration by forming a second compressed image. The second compressed image may be restricted to a second region of a second image area by representing at least one segment of the second image within the second region with a reference to another segment of the second image within the second region. The first and second images are combined by selecting a portion of the first compressed image, selecting a portion of the second compressed image, and combining the selected portions to form an integrated image.
Abstract:
A method (300) and system (100,200) for customizing a user interface (122) on a display or consumption device (121) is provided. In one embodiment, the method includes delivering, with a control circuit (210), an advertisement (114) to a plurality of client devices (106,107,108). A channel collector device 113 can then capture viewership activity data (116,117,118) occurring during playout of the advertisement. The method then modifies a presentation characteristic of the user interface by presenting a playback (501) comprising both the advertisement and at least some of the viewership activity data in synchrony.
Abstract:
A video on demand (VOD) asset management system (100). Content is moved within the VOD system in accordance with predetermined variables such that certain content, such as that which is in high demand, is located on a server (120, 125) which is nearer to a subscriber (130), and content which is in lesser demand is located on a server (110, 115) which is more remote from the subscriber. Content may also be duplicated or moved within the system based upon other variables such as demographics of the subscriber, whether there is an advertising campaign for the content, and the age of the content.
Abstract:
A data transfer system (100) includes a data transmission device (103). The data transmission device can include a data communication circuit (206), a memory (202), and a control circuit (201) operable with the communication circuit and the memory circuit. The control circuit can transfer data (306) to a remote device, establish a sliding window (307) spanning a predetermined amount of data, and store the predetermined amount of data. In response to receiving an error message (311) identifying particular data (312) encountering errors in transfer, the control circuit can retransfer the particular data so long as the particular data is within the sliding window.
Abstract:
A server complex (102) includes an interface portal (116). The server complex exposes (401) a generic resource locator (402) pointing to the media content in a generic format at the interface portal. The server complex receives requests for media content (101) from at least a first client device (601) to receive the media content in a first format (603) and at least a second client device (602) to receive the media content in a second format (604). The server complex determines (405), from a header (407) of the request, whether the request is from the first client device or the second client device, generates (409) a response message (108) comprising a manifest file (109) comprising a device specific resource locator (410) pointing to the media content cached (412) in one of the first format or the second format, and transmits (411) the response message to the requesting client.
Abstract:
At least a first image, such as a motion video image, is prepared for integration with at least a second image, such as a motion video image and/or a still image. The first image may be a barker, and the second image may be a menu or programming guide. To prepare the first image for integration, a first compressed image is formed, restricted to a first region of a first image area by representing at least one segment of a first image within the first region with a reference to another segment of the first image within the first region. The second image may also be prepared for integration by forming a second compressed image. The second compressed image may be restricted to a second region of a second image area by representing at least one segment of the second image within the second region with a reference to another segment of the second image within the second region. The first and second images are combined by selecting a portion of the first compressed image, selecting a portion of the second compressed image, and combining the selected portions to form an integrated image.
Abstract:
An intermediate server (104) is operable in a distributed key management system (300). The intermediate server comprises one or more processors (205) and an intermediate key material repository (302) to store digital rights management key material. The intermediate server can be operable in the system between a master server (101) and a local server (106), with the local server to deliver content (108) to one or more subscriber devices (109,110). The intermediate server, or optionally a management system (117) can pre-populate the intermediate key material repository with one or key material (1005) corresponding to fragments (1001) of the content prior to the fragments of content being requested by the one or more subscriber devices.
Abstract:
A method (300) and system (100,200) for customizing a user interface (122) on a display or consumption device (121) is provided. In one embodiment, the method includes delivering, with a control circuit (210), an advertisement (114) to a plurality of client devices (106,107,108). A channel collector device 113 can then capture viewership activity data (116,117,118) occurring during playout of the advertisement. The method then modifies a presentation characteristic of the user interface by presenting a playback (501) comprising both the advertisement and at least some of the viewership activity data in synchrony.