Abstract:
Methods and apparatus suitable for quickly and accurately measuring 13C levels and supporting data in an aqueous fluid reservoir. Interpreting the resulting data to indicate key factors regarding a reservoir and completion methods, including reservoir constraint, gas producibility, and completion success. A sensor and to a sensing method that evaluates the level of hydrologic constraint in aquifers occurring in unconventional reservoirs, such as shales and coals is disclosed. Specifically, Raman spectroscopy is disclosed as a sensor and a sensing method that measures the level of naturally-occurring 13C in an aqueous reservoir and compares the level of 13C to the levels typical for highly constrained and highly unconstrained reservoirs. The disclosed sensor and sensing method also monitors the level of naturally-occurring 13C in a reservoir. Also disclosed is a method of using δ13CDic to evaluate geographic areas of coal bed reservoir water having biologic methanogenic activity.
Abstract:
Disclosed is a calcium salt, Ca(HMDS)2, where HMDS is the hexamethyldisilazide anion (also known as bis(trimethylsilyl)amide), enables high current densities and high coulombic efficiency for calcium metal deposition and dissolution. These properties facilitate the use of this salt in batteries based on calcium metal. In addition, the salt is significant for batteries based on metal anodes, which have higher specific energies than batteries based on intercalation anodes, such as LiC6. In particular, a calcium based rechargeable battery includes Ca(HMDS)2 salt and at least one solvent, the solvent suitable for calcium battery cycling. The at least one solvent can be diethyl ether, diisopropylether, methyl t-butyl ether (MTBE), 1,3-dioxane, 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran, glyme, diglyme, triglyme or tetraglyme, or any mixture thereof.
Abstract:
Methods and apparatus suitable for quickly and accurately measuring 13C levels and supporting data in an aqueous fluid reservoir. Interpreting the resulting data to indicate key factors regarding a reservoir and completion methods, including reservoir constraint, gas producibility, and completion success. A sensor and to a sensing method that evaluates the level of hydrologic constraint in aquifers occurring in unconventional reservoirs, such as shales and coals is disclosed. Specifically, Raman spectroscopy is disclosed as a sensor and a sensing method that measures the level of naturally-occurring 13C in an aqueous reservoir and compares the level of 13C to the levels typical for highly constrained and highly unconstrained reservoirs. The disclosed sensor and sensing method also monitors the level of naturally-occurring 13C in a reservoir. Also disclosed is a method of using δ13CDic to evaluate geographic areas of coal bed reservoir water having biologic methanogenic activity.
Abstract:
The invention includes a method of detecting the presence or absence of mold in a sample. The method can include the step of applying a sample suspected of containing the mold to a growth medium, optionally fragmenting the sample, associating the sample with a labeling agent, and detecting the presence or absence of the mold by detection of the labeling agent. The invention can also include a medium for growing mold that includes a stimulation agent.
Abstract:
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
Abstract:
There is disclosed a system comprising Raman spectroscopy used to detect key characteristics of ice formation on aircraft wings and engines in real time. This disclosure provides a method and apparatus for early detection of icing. The disclosed apparatus is suitable for use in aircraft, boats, oil rigs, wind turbines, and the like.
Abstract:
Well fluids in coalbed natural gas reservoirs and other carbonaceous reservoirs are analyzed to determine production factors such as gas content, critical desorption pressure, and/or other reservoir and operational variables. In particular, the partial pressure of methane or a predictor substance, or a methane concentration, are measured and/or determined for the wells and production factors are determined therefrom.
Abstract:
Methods and apparatus employ the use of arrays (301, 902) of two or more electronically-discrete electrodes (1, 2, 3 . . . ) to facilitate high-throughput preparation and testing of materials comprising two or more elements. High rates of deposition, synthesis and/or analysis of materials are achieved with the use of arrays of electrodes whereby desired materials are developed. The high rate synthesis and/or analysis of an array of materials uses deposition control techniques in conjunction with the electrode array to develop a meaningful array of materials and to analyze the materials for desired characteristics to develop one or more materials with desired characteristics. The use of an array of electrodes enables high-throughput development of materials having scientific and economic advantages.