Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
The device of the present application, an adhesive disk, relates to non-invasive multi-modality radiographic surface markers and provides means for marking patients and diagnostic images taken of those patients through different methods including X-Ray, Computerized Tomography, Positron Emission Tomograph, and Nuclear Magnetic Resonance Imaging among others. The device of the present application also provides means for enabling the accurate location of internal structures of a patient.
Abstract:
A sideport connector for an IV catheterization system is disclosed in which a secure connection can be maintained with standard Y-shaped sideport connectors, such as a septum-type connector. The connector of the present invention comprises a clip having a collar which slidably and, optionally, rotatably engages the septum in order to prevent accidental disengagement. The clip is prevented from disengaging motion by, preferably, a ratchet-pawl mechanism. In another embodiment, the clip can be mounted on the branch of the Y-shaped sideport. The connector also comprises a needle shield or, optionally, a cap to prevent self-injection and contamination.
Abstract:
Safety enhanced device and method are disclosed for effecting application of a therapeutic agent. A removable and operationally non-volatile programmable element is used to control operation of a therapeutic agent delivery unit. A computer, operationally independent of the delivery unit, is utilized to establish coded information for programming of the programmable element while removed from the delivery unit. Operation of the delivery unit according to the program then established for the programmable element is simulated at the computer prior to actual programming of the programmable element to insure the integrity of subsequent delivery of the therapeutic agent to a patient by the delivery unit. The programmable element effects independent delivery of therapeutic agents in each of a plurality of channels under the control of the programmable element. The programmable element is programmed to establish a flow profile that is customized for a particular patient during each minute of each day, and patient demand for therapeutic agents can also be accommodated with safeguards being included to assure proper dispensing.
Abstract:
A storage receptacle sealing and transfer apparatus is disclosed for selectively enabling sealing and transfer of material to and from the receptacle. The apparatus is particularly useful for maintaining and later transferring drug and associated materials, under sterile conditions, to achieve mixing, as, is necessary, for example, in reconstituting a drug by mixing the drug with a diluent prior to delivery to a patient. The transfer apparatus is mounted at the aperture, or mouth, of a storage receptacle to seal the aperture until the contents are needed, and then to permit sterile transfer from one receptacle to another receptacle through a central passage. The apparatus also includes venting through one or more passages offset from the central passage for supplying or discharging air into the storage receptacle as needed, and a filter is included in each vent passage, with the filter being permeable to passage of gases, including air, in either direction through the vent passage, but precluding passage of liquid or solid materials or microorganisms in either direction through the vent passage. The central passage and all venting passages are sealed until use, and the central passage also includes a septum in one disclosed embodiment, with a penetrating unit being included for access through the septum to the interior of the storage receptacle for delivery or withdrawal of substance therefrom.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
Device and method are disclosed for effecting application of a therapeutic agent. A removable programmable element is used to control operation of a delivery unit, which unit delivers the therapeutic agent to the patient. The programmable element is programmed, while removed from the delivery unit, by a computer that is operationally independent of the delivery unit to insure the integrity of subsequent delivery of the therapeutic agent to the patient by the delivery unit. The delivery unit requires no microprocessor and can include a plurality of channels for effecting independent delivery of therapeutic agents in each channel under the control of the programmable element. The programmable element is programmed with respect to available protocol informaton, including patient history, needs and tolerances, as well as therapeutic agent parameters, to thereby establish a flow profile that is customized for a particular patient during each moment of each day. Patient demand for therapeutic agents can also be accommodated with safeguards being included to assure proper dispensing of the demanded agents.
Abstract:
An electrode structure for use with medical electronics instruments such as electromyographs is described. A thin, flexible body of non-conductive material has one or more wells therein. A flexible conductive member which provides an electrode is disposed at the bottom of each well. The spacing between a plurality of electrodes, which can provide bipolar and ground inputs to the medical electronic instrument, is precisely determined by virtue of the disposition of the electrodes in the wells. The electrode structure provides contact with a body surface, usually the skin. To facilitate the contact a conductive jelly is used. This conductive jelly is received in the wells. It makes contact with the electrodes. Ribs are provided in the regions between the electrodes which form a seal at the skin so as to prevent the flow of conductive fluid between electrodes; thus preventing short circuits. The flexibility of the structure provides for comfort and reliable long term attachment and also for maintaining the contact of the electrodes and sealing ribs with the skin as the skin and muscle beneath, flex.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.