Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Devices are provided for separating and focusing charged analytes, comprising a separation chamber and two or more electrodes, for example, an electrode array. A membrane separates the separation chamber and the electrodes. The separation chamber of the device is configured, that is, the separation chamber has a shaped geometry, which serves to induce a gradient in an electric field generated by the electrodes in the electrode chamber. Optionally, molecular sieve is included in the separation chamber that is operative to shift the location at which a stationary focused band of a charged analyte forms under a given set of focusing process parameters. Methods are provided for separating and focusing charged analytes comprising introducing a first fluid comprising at least one charged analyte into the separation chamber of a device as just described, applying an electric field gradient to the charged analyte to focus the charged analyte in the electric field gradient.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. Suitable deposition species include precursors that contain silicon, germanium, fluorine, and/or hydrogen. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Novel fluid logic devices are disclosed. Certain examples of the fluid logic devices include two or more fluid logic gates that are each operative to select and/or direct analytes in a sample into one or more fluid flow channels in communication with the fluid logic gates. The fluid logic device can be part of a larger system, such as a chromatography system, or can be stand-alone device.
Abstract:
A fluid separation conduit cartridge comprising a fluid separation conduit is disclosed. In certain embodiments the fluid separation conduit is potted to provide operation at increased pressures. In other embodiments, the fluid separation conduit cartridge has one or more memory units. The memory units are operative to store data such as, for example, cartridge usage and test results.
Abstract:
Devices, systems and methods are provided for processing fluid samples containing one or more analytes. In certain examples, an electrophoretic device comprises a separation chamber and an electrode chamber, each of which may be uniform or non-uniform. The electrode chamber includes two or more electrodes or may include an electrode array. Molecular sieve may be included in the separation chamber, and the molecular sieve is operative to shift the location at which a stationary focused band of a charged analyte forms under a given set of focusing process parameters. Such systems are especially suitable for linking up analytical instruments in a hyphenated fashion, particularly where the instruments have differing system parameters.
Abstract:
Novel fluid logic devices are disclosed. Certain examples of the fluid logic devices include two or more fluid logic gates that are each operative to select and/or direct analytes in a sample into one or more fluid flow channels in communication with the fluid logic gates. The fluid logic device can be part of a larger system, such as a chromatography system, or can be stand-alone device.
Abstract:
Fluid processing apparatus comprises a fluid-handling manifold comprising a manifold body having at least a first fluid duct and a second fluid duct. The first and second fluid ducts are in fluid communication with each other at a microfluidic junction of the fluid-handling manifold. The manifold body further comprises a transducer operative to generate ultrasonic acoustic traveling wave radiation into fluid in the microfluidic junction from an active surface toward a non-reflective boundary of the microfluidic junction. The microfluidic junction is operative to pass fluid received from the first and second duct, with micro-mixing effected by the traveling wave radiated into the junction during the fluid flow.
Abstract:
An optical data storage and retrieval system that includes a phase change storage medium and dual energy sources. The phase change material may store information by undergoing a transformation from one structural state to another structural state through application of energy. The system is equipped with two energy sources, neither of which alone provides sufficient energy to effect the transformation. The combination of both energy sources, however, provides sufficient energy to induce the transformation needed to record information. The energy from either source may be optical, thermal, electromagnetic, mechanical or magnetic energy.