Abstract:
Methods, systems, and data structures for communicating object metadata are provided. A generic metadata container is presented that allows object metadata to be described in an extensible manner using protocol-neutral and platform-independent methodologies. A metadata scope refers to a dynamic universe of targets to which the included metadata statements correspond. Metadata properties provide a mechanism to describe the metadata itself, and metadata security can be used to ensure authentic metadata is sent and received. Mechanisms are also provided to allow refinement and replacement of metadata statements. Communication of metadata is expedited using hash digests to confirm metadata versions, and by piggybacking policy metadata requests and responses on other substantive data communication messages, thereby dynamically altering future communications.
Abstract:
Mechanisms for providing requested date items in a request-driven enumeration session while retaining to control over how much inter-message context information is retained by the data provider. Upon receiving a request for the data items, the data provider identifies a portion of the data items to be provided in the first response along with context information that reflects that the first portion of information has been provided. The data provider then makes a determination of how much of the context is to be provided to the data receiver system, and then provides that appropriate context information to the data receiver. Furthermore, the data provider provides a response that includes the first portion of the data items. The data receiver includes this first provided context information in the second request for the next portion of the data items, allowing continuity in the data transfer session.
Abstract:
A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.
Abstract:
A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.
Abstract:
A compiler supporting a language in which selected semantic objects are represented as data objects. The data objects may be used in multiple ways to expand the capabilities of the programming language. Data objects may be passed to applications and used to create executable instructions for that application. In this way, instructions written in the native language of the compiler may be used to control applications that accept programs in a language inconsistent with the native language of the compiler. The syntax checking and variable binding capabilities of the compiler may be used for those instructions that will be executed by an application separate from the object code generated by the compiler. The semantic objects represented as data objects may be selected based on express operations included in the source code or may be based on implicit type conversion.
Abstract:
A cryptographic session key is utilized to maintain security of a digital identity. The session key is valid only for a limited period of time. Additional security is provided via a bimodal credential allowing different levels of access to the digital identify. An identity token contains pertinent information associated with the digital identity. The identity token is encrypted utilizing public-key cryptography. An identifier utilized to verify the validity of the digital identity is encrypted with the cryptographic session key. The encrypted identity token and the encrypted identifier are provided to a service for example. The service decrypts the encrypted identity token utilizing public key cryptography, and decrypts, with the cryptographic session key obtained from the identity token, the encrypted identifier. If the identifier is determined to be valid, the transaction proceeds normally. If the identifier is determined to be invalid, the transaction is halted.
Abstract:
Serialization and deserialization using data contracts. The data contract specifies data types that are serialized and deserialized for data objects that are associated with the data contract. During serialization, the data contract associated with the data object is identified. Then, the data fields that correspond to those specified data field types are extracted from the data object and serialized into a serialization format. During deserialization, the serialization mechanism receives a serialized data structure having a particular serialization format. A data contract is then identified as being associated with the serialized data structure. After deserialization of the serialized data structure into abstract data, a corresponding data object is populated with data fields that correspond only with those data field types specified in the data contract. Accordingly, data abstraction is enabled while serializing and deserializing.
Abstract:
A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.
Abstract:
A method includes advertising a policy characterizing communication properties supported by a node. The policy may be distributed to another node in response to a request for the policy. Policy expressions in the policy include one or more assertions that may be grouped and related to each other in a plurality of ways. A system includes a policy generator for generating at least one policy characterizing properties of a node. A policy retriever retrieves a policy from another node and a message generator generates a message to the other node, wherein the message conforms to the policy from the other node.