Abstract:
An electrochromic device includes a light transmissive first substrate, a working electrode disposed on the first substrate, a light transmissive second substrate facing the first substrate, a counter electrode disposed on the second substrate, and a lithium-rich anti-perovskite (LiRAP) material disposed between the first and second substrates. The LiRAP material includes an ionically conductive and electrically insulating LiRAP material.
Abstract:
A monolithic method of forming an electrochromic (EC) pane unit, the method including: forming a first electrode via a solution deposition process, on a first conductive layer disposed on a transparent first substrate, forming an electrolyte layer on the first electrode via a sol-gel process, forming a second electrode on the electrolyte layer via a solution deposition process, and forming a second conductive layer on the second electrode.
Abstract:
An electrochromic device includes a light transmissive first substrate, a working electrode disposed on the first substrate, a light transmissive second substrate facing the first substrate, a counter electrode disposed on the second substrate, and a lithium-rich anti-perovskite (LiRAP) material disposed between the first and second substrates. The LiRAP material includes an ionically conductive and electrically insulating LiRAP material.
Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, and a solid-state polymer electrolyte disposed therebetween. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
An electrochromic (EC) privacy window includes an EC pane unit including a first EC device having a bright state and a dark state, and a privacy device facing the EC pane unit and having a bright state and a privacy state configured to attenuate visible radiation transmitted through the window. In some embodiments, when the privacy device is in the privacy state, the window has transmitted haze of greater that 80%. In other embodiments, when the privacy device is in the privacy state and the first EC device is in the dark state, the window has a visible transmittance of about 0.1% or less.
Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, and a solid-state polymer electrolyte disposed therebetween. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
Methods of charging an electrochromic device includes post assembly charging using a sacrificial redox agent, lithium diffusion into an electrode from a lithium layer or salt bridge charging, or pre assembly charging using proton photoinjection into an electrode.
Abstract:
An electrochromic device and method, the device including: a first transparent conductor layer; a working electrode disposed on the first transparent conductor layer and including nanostructures; a counter electrode; a solid state electrolyte layer disposed between the counter electrode and the working electrode; and a second transparent conductor layer disposed on the counter electrode. The nanostructures may include transition metal oxide nanoparticles and/or nanocrystals configured to tune the color of the device by selectively modulating the transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Abstract:
An electrochromic device includes a light transmissive first substrate, a working electrode disposed on the first substrate, a light transmissive second substrate facing the first substrate, a counter electrode disposed on the second substrate, and a lithium-rich anti-perovskite (LiRAP) material disposed between the first and second substrates. The LiRAP material includes an ionically conductive and electrically insulating LiRAP material.
Abstract:
An electrochromic device includes an optically transparent first substrate, a first transparent conductor disposed on the first substrate, a counter electrode disposed on the first transparent conductor, an optically transparent, ionically conductive first capping layer disposed on the counter electrode, and configured to permit diffusion of alkali metal ions, and to block the diffusion of organic compounds and carbon, an optically transparent second substrate, a second transparent conductor disposed on the second substrate, a working electrode comprising electrochromic nanoparticles disposed on the second transparent conductor, and an electrolyte disposed between the first capping layer and the working electrode.