Abstract:
A Z-axis capacitive accelerometer includes a substrate, a capacitance sensing plate, a proof mass and at least one pair of spring beams. The capacitance sensing plate includes two symmetrical sense areas to create differential capacitive measurement. A decoupling structure separates the proof mass and the capacitance sensing plate and their rotational motions from each other. In the proposed Z axis capacitive accelerometer, the distance of the capacitance sensing plate relative to its rotation axis is considerably increased, thereby effectively enhancing the sensitivity when measuring the Z-axis acceleration.
Abstract:
Micro-machined capacitive sensors implemented in micro-electro-mechanical system (MEMS) processes that have higher sensitivity, while providing an increased linear capacitive sensing range. Capacitive sensing is achieved via variable-area sensing, which employs a transduction mechanism in which the relationship between changes in the capacitance of variable, parallel-plate capacitors and displacements of a proof mass is generally linear. Each respective variable, parallel-plate capacitor is formed by a finger/electrode pair, in which both the finger and the electrode have rectangular tooth profiles that include a plurality of rectangular teeth. Because changes in the overlapping area of the finger and the electrode are multiplied by the number of rectangular teeth, while the standing capacity of the micro-machined capacitive sensor remains relatively high, the sensitivity of the micro-machined capacitive sensor employing variable-area sensing is significantly increased per unit area of the finger and the electrode.
Abstract:
A Z-axis capacitive accelerometer includes a substrate, a capacitance sensing plate, a proof mass and at least one pair of spring beams. The capacitance sensing plate includes two symmetrical sense areas to create differential capacitive measurement. A decoupling structure separates the proof mass and the capacitance sensing plate and their rotational motions from each other. In the proposed Z axis capacitive accelerometer, the distance of the capacitance sensing plate relative to its rotation axis is considerably increased, thereby effectively enhancing the sensitivity when measuring the Z-axis acceleration.