Abstract:
The present invention relates to a substrate in particular of EUV microlithography, to the production of a substrate of this type and to the use of this substrate as a substrate for mirrors and/or masks or mask blanks in particular in EUV microlithography.
Abstract:
A method of detecting defects present at the surface and/or internally in transparent materials, particularly of detecting included foreign bodies or bubbles in glass, is disclosed. The test material is scanned with an electromagnetic radiation of a single wavelength which is set to the penetration depth in the test material. The intensity reflected by the defects is picked up and analyzed. By this method only defects located up to a specified depth in the material are detected. Visible light as well as UV- or IR radiation may be applied. The associated test rig comprises a tunable Laser (2), a conveyor belt (6) carrying the test material (5), a fast rotating mirror-wheel (3) which directs the light beam (4) at high speed over the test material (5), and an optical sensor (7) connected with an analyzer unit (8).
Abstract:
A backlight system for background illumination of displays or screens includes at least one light source with a glass envelope, whereby the glass composition of the glass envelope is doped with one or more doping oxides which absorb the IR-radiation, and/or whereby the glass envelope has an outside and/or inside coating which absorbs the IR-radiation, and/or whereby the backlight system has a coating on components other than the glass envelope, absorbing the IR-radiation.
Abstract:
The invention discloses an SiO2—TiO2 glass, which is preferably made by flame-hydrolysis and which distinguishes itself by increased resistance to radiation, especially in connection with EUV lithography. By purposefully reducing the hydrogen content, clearly improved resistance to radiation and reduced shrinking is achieved.
Abstract:
Glass-ceramic is provided that is at least partly provided with a hard material layer to protect against external mechanical influences. The hard material layer contains at least two phases, which are present side by side and are mixed with one another. The at least two phases include at least one nanocrystalline phase and one amorphous phase. The hard material layer has a hardness of at least 26 GPa and a layer thickness of at least 0.5 μm. The hard material layer is chemically resistant in the temperature range from 200° C. to 1000° C. The coefficient of thermal expansion (α) of the glass-ceramic does not differ by more than +/−20% from the coefficient of thermal expansion (α) of the hard material layer.
Abstract:
A substrate, such as a glass, glass ceramic, ceramic or metal substrate, is provided with a thermocatalytically active coating on at least a part of the substrate surface. The thermocatalytic coating contains an inorganic lithium salt or organic lithium-containing compound in an amount that is equivalent to not less than 2 wt. % of lithium ions, based on total coating weight. The thermocatalytic coating has a glass, glass solder or sol-gel matrix in which the lithium salt or organic lithium-containing compound is introduced. Optional barrier and IR-reflecting layers are arranged between the substrate surface and the thermocatalytically active coating.
Abstract:
To lead an optical waveguide through a housing wall, the optical waveguide is, in one section freed of its protective layer and hermetically connected in a bushing by glass soldering it to the bushing. In at least one load-relieving section leading out of the bushing, the optical waveguide is fastened by its protective layer to an extension of the bushing. The bushing is hermetically set into the housing wall.
Abstract:
A substrate, such as a glass, glass ceramic, ceramic or metal substrate, is provided with a thermocatalytically active coating on at least a part of the substrate surface. The thermocatalytic coating contains an inorganic lithium salt or organic lithium-containing compound in an amount that is equivalent to not less than 2 wt. % of lithium ions, based on total coating weight. The thermocatalytic coating has a glass, glass solder or sol-gel matrix in which the lithium salt or organic lithium-containing compound is introduced. Optional barrier and IR-reflecting layers are arranged between the substrate surface and the thermocatalytically active coating.
Abstract:
The invention discloses an SiO2—TiO2 glass, which is preferably made by flame-hydrolysis and which distinguishes itself by increased resistance to radiation, especially in connection with EUV lithography. By purposefully reducing the hydrogen content, clearly improved resistance to radiation and reduced shrinking is achieved.
Abstract:
A process for coating an exterior of a lamp is disclosed, which comprises performing the coating in a microwave reactor by a microwave plasma CVD process and coupling microwave radiation into the microwave reactor with a microwave power greater than or equal to a power threshold value at which a plasma with reduced microwave permeability is ignited in the microwave reactor.