Abstract:
When controlling transmission channel parameters and video encoding parameters so as to be linked to each other in video transmission, the video quality on the receiving side is further improved. As a parameter control unit that controls video encoding parameters regarding video encoding in a video encoding unit and transmission channel parameters regarding error correction coding and modulation in a channel coding/modulation unit so as to be linked to each other, a cross layer rate control unit is provided. The cross layer rate control unit performs variable control of the GOP size according to propagation changes by reducing the GOP size when the predicted value of the PHY transmission rate is larger than a determined reference value and increasing the GOP size when the predicted value of the PHY transmission rate is equal to or less than the determined reference value.
Abstract:
In order to reduce interference between cells through hopping and use frequencies in a good propagation situation, a scheduler section 102 carries out scheduling for determining to which user data should be sent using CQI from each communication terminal apparatus, selects a user signal to be sent in the next frame and determines in which subcarrier block the data should be sent. An MCS decision section 103 selects a modulation scheme and coding method from the CQI of the selected user signal. A subcarrier block selection section 110 selects a subcarrier block instructed by the scheduler section 102 for each user signal. For the respective subcarrier blocks, FH sequence selection sections 111-1 to 111-n select hopping patterns. A subcarrier mapping section 112 maps the user signal and control data to subcarriers according to the selected hopping pattern.
Abstract:
A base station effectively transmits BCH data and includes an encoding unit for encoding the BCH data; a modulation unit for modulating the BCH data after being encoded; a transmission band setting unit for setting a BCH data transmission band in one of sub carriers constituting an OFDM symbol; encoding units for encoding user data, modulation units for modulating user data after being encoded; and an IFFT unit for mapping the BCH data and the user data to each of the sub carriers and performing IFFT to generate an OFDM symbol. Here, the IFFT unit maps the BCH data to the sub carrier existing in the transmission band set by the transmission band setting unit among the plurality of sub carriers.
Abstract:
The invention relates to methods for transmitting and receiving a data bit stream in a communication system using 16-QAM constellations. Further, an apparatus for performing the methods is provided. To improve the bit-error rate performance of the communication using the 16-QAM constellations the invention suggests the use 16-QAM constellations with specially selected mapping rules together with a special constellation rearrangement for creating different versions of the 16-QAM constellations. Further, the data stream is transmitted according to a diversity scheme employing different versions of the 16-QAM constellations obtained adhering the mapping rules and rearrangement rules defined by the invention.
Abstract:
Disclosed are a terminal apparatus and a base station apparatus wherein the collision of the response signals of a plurality of terminals can be avoided. A response control unit (207) performs a control such that a data response resource, which is notified by downstream assignment control information, is used to transmit an ACK/NACK responsive to a downstream data error detection result. When a PA determining unit (204) determines that PA has terminated, the response control unit (207) performs a control such that the same resource as the data response resource is used to transmit an ACK as a response signal responsive to the downstream assignment control information. When having received the ACK responsive to the downstream assignment control information at the termination of PA, a retransmission control unit (106) determines that the termination of PA has completed. When having received a NACK responsive to the downstream data at the termination of PA, the retransmission control unit (106) determines that the resource assignment termination has been overlooked. When having determined that the termination of PA has been overlooked, the retransmission control unit (106) performs a control such that the downstream assignment control information transmitted at the termination of PA is retransmitted.
Abstract:
A method is provided which improves reliability of channel estimation in a digital communication system by reducing the ambiguity in the recognition of received symbols evaluated for the channel estimation. A first plurality of bits is mapped to a modulation state according to a given Gray mapping of binary numbers to modulation states and transmitted. The plurality of bits is re-transmitted at least once, with a sub-set of bits contained in the plurality of bits inverted, and mapped to further modulation states according to the same Gray mapping. The bits to be inverted are determined in a way that the number of different vector sum results obtainable, for all combinations of bit values within the first plurality of bits, by adding vectors representing complex values of the first and further modulation states in a complex plane, is lower than the number of different modulation states within the Gray mapping.
Abstract:
Provided is a base station capable of effectively transmitting BCH data. The base station (100) includes: an encoding unit (101) for encoding the BCH data; a modulation unit (102) for modulating the BCH data after being encoded; a transmission band setting unit (103) for setting a BCH data transmission band in one of sub carriers constituting an OFDM symbol; encoding units (104-1 to 104-N) for encoding user data (#1 to #N), modulation units (105-1 to 105-N) for modulating user data (#1 to #N) after being encoded; and an IFFT unit (106) for mapping the BCH data and the user data (#1 to #N) to each of the sub carriers (#1 to #K) and performing IFFT to generate an OFDM symbol. Here, the IFFT unit (106) maps the BCH data to the sub carrier existing in the transmission band set by the transmission band setting unit (103) among the plurality of sub carriers (#1 to #K).
Abstract:
A rate matching apparatus is capable of improving the bit error rate characteristic at a data receiving end. A rate matching part (106), which serves as a rate matching apparatus, generates, from a first encoded block corresponding to N symbols (where N is an integer equal to or greater than one), a second encoded block corresponding to N+K symbols (where K is an integer equal to or greater than one). In the rate matching part (106), a to-be-divided bit-group extracting part (122) extracts, from the first encoded block, a first bit group corresponding to any of the N symbols. A dividing part (124) divides the extracted first bit group into L divided bit groups corresponding to L symbols (where L is an integer equal to or greater than two but equal to or smaller than K+1), thereby providing the second encoded block.
Abstract:
A wireless reception apparatus (200) for a wireless communication system which transmits, between an MBS transmission apparatus and MBS reception apparatus, multiple transport blocks (TB) coded by error correction coding at the physical layer or at both the physical layer and the data link layer. In the wireless reception apparatus (200), a feedback condition judgment unit (208) transmits feedback information to the MBS transmission apparatus when a reception judgment unit (206) detects errors in L or more TBs out of an N-number of TBs (N is a natural number while L is a natural number less than N) that constitute the beginning portion of any MAC FEC blocks where the beginning TB has been identified. In the wireless communication apparatus (100), the link adaptation unit (114), based on the feedback information from the wireless communication apparatus (200), adjusts the physical layer transmission parameters used for the TBs in the physical layer processing unit.
Abstract:
A method is provided which improves reliability of channel estimation in a digital communication system by reducing the ambiguity in the recognition of received symbols evaluated for the channel estimation. A data word transmitted according to a first mapping of data word values to modulation states is re-transmitted at least once with a second, re-arranged mapping of data word values to modulation states. The second mapping and possible further mappings are generated from the first mapping in a way that the number of different results which can be obtained from combining the transmitted original data symbol and the re-transmitted counterpart data symbol(s) is lower than the number of original modulation states in the first mapping.