Abstract:
A color controller for a luminaire constituted of: a thru-converter operative to convert an input signal to at least one luminaire drive signal; an illumination sampler arranged to sample an output from the luminaire and generate a representation thereof; and a feedback controller arranged to receive the output representation and generate the updatable conversion factor in cooperation with calibration luminance and color values, wherein the thru-converter operation is responsive to a trigger signal for defining a first and a second mode, the first mode for generating the luminaire drive signal for the luminaire responsive to the input signal being a frame luminance signal and target color signals and wherein the conversion to the at least one luminaire drive signal is responsive to an updatable conversion factor, and the second mode for generating the luminaire drive signal for the luminaire responsive to the feedback controller.
Abstract:
A color controller for a luminaire constituted of: a thru-converter operative to convert an input signal to at least one luminaire drive signal; an illumination sampler arranged to sample an output from the luminaire and generate a representation thereof; and a feedback controller arranged to receive the output representation and generate the updatable conversion factor in cooperation with calibration luminance and color values, wherein the thru-converter operation is responsive to a trigger signal for defining a first and a second mode, the first mode for generating the luminaire drive signal for the luminaire responsive to the input signal being a frame luminance signal and target color signals and wherein the conversion to the at least one luminaire drive signal is responsive to an updatable conversion factor, and the second mode for generating the luminaire drive signal for the luminaire responsive to the feedback controller.
Abstract:
The present invention includes a circuit and method for determining fly height based upon the PW50. A signal is used to provide a measure of PW50 by detecting the peak height and the area of the signal. The ratio of the peak height and area provides an indication of PW50 and correspondingly, the fly height.
Abstract:
An apparatus for Position Error Signal (PES) measurement in a disk drive servo system includes a variable-gain amplifier that receives an analog servo signal; a multiplier coupled to the variable-gain amplifier; a low-pass filter coupled to the multiplier; a digital-to-analog converter; an analog summer that is coupled to the low-pass filter and to the digital-to-analog converter; an analog-to-digital converter coupled to the analog summer; a digital summer coupled to the analog-to-digital converter, and a phase-locked loop that provides timing signals to the multiplier, the digital-to-analog converter and the analog-to digital converter. The invention enables an output of the variable-gain amplifier to be multiplied with the clocking signal of the phase-locked loop. The multiplication output signal is then filtered by the low-pass filter. The output of the low-pass filter is summed with voltage ramp signals that are generated by the digital-to-analog converter and the resulting signals are converted to a series of 6-bit words by the digital-to-analog converter. Thereafter, the series of the 6-bit words are summed by the digital summer to generate a 10-bit PES.