Abstract:
Systems and methods for monitoring operation of a pump, including verifying operation or actions of a pump, are disclosed. A baseline profile for one or more parameters of a pump may be established. An operating profile may then be created by recording one or more values for the same set of parameters during subsequent operation of the pump. The values of the baseline profile and the operating profile may then be compared at one or more points or sets of points. If the operating profile differs from the baseline profile by more than a certain tolerance an alarm may be sent or another action taken, for example the pumping system may shut down, etc.
Abstract:
Systems and methods for compensating for pressure increase which may occur in various enclosed spaces of a pumping apparatus are disclosed. Embodiments of the present invention may compensate for pressure increases in chambers of a pumping apparatus by moving a pumping means of the pumping apparatus to adjust the volume of the chamber to compensate for a pressure increase in the chamber. More specifically, in one embodiment, to account for unwanted pressure increases to the fluid in a dispense chamber the dispense motor may be reversed to back out piston to compensate for any pressure increase in the dispense chamber.
Abstract:
Embodiments of the systems and methods disclosed herein utilize a brushless DC motor (BLDCM) to drive a single-stage or a multi-stage pump in a pumping system for real time, smooth motion, and extremely precise and repeatable position control over fluid movements and dispense amounts, useful in semiconductor manufacturing. The BLDCM may employ a position sensor for real time position feedback to a processor executing a custom field-oriented control scheme. Embodiments of the invention can reduce heat generation without undesirably compromising the precise position control of the dispense pump by increasing and decreasing, via a custom control scheme, the operating frequency of the BLDCM according to the criticality of the underlying function(s). The control scheme can run the BLDCM at very low speeds while maintaining a constant velocity, which enables the pumping system to operate in a wide range of speeds with minimal variation, substantially increasing dispense performance and operation capabilities.
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having a motor driven feed stage pump and a motor driven dispense stage pump. The feed stage motor and the feed stage motor can include various types of motors and the pumps can be rolling diaphragm or other pumps. According to one embodiment, a dispense block defining the pump chambers and various flow passages can be formed out of a single piece of material.
Abstract:
Embodiments of the systems and methods disclosed herein utilize a brushless DC motor (BLDCM) to drive a single-stage or a multi-stage pump in a pumping system for real time, smooth motion, and extremely precise and repeatable position control over fluid movements and dispense amounts, useful in semiconductor manufacturing. The BLDCM may employ a position sensor for real time position feedback to a processor executing a custom field-oriented control scheme. Embodiments of the invention can reduce heat generation without undesirably compromising the precise position control of the dispense pump by increasing and decreasing, via a custom control scheme, the operating frequency of the BLDCM according to the criticality of the underlying function(s). The control scheme can run the BLDCM at very low speeds while maintaining a constant velocity, which enables the pumping system to operate in a wide range of speeds with minimal variation, substantially increasing dispense performance and operation capabilities.
Abstract:
Systems and methods for monitoring operation of a pump, including verifying operation or actions of a pump, are disclosed. A baseline profile for one or more parameters of a pump may be established. An operating profile may then be created by recording one or more values for the same set of parameters during subsequent operation of the pump. The values of the baseline profile and the operating profile may then be compared at one or more points or sets of points. If the operating profile differs from the baseline profile by more than a certain tolerance an alarm may be sent or another action taken, for example the pumping system may shut down, etc.
Abstract:
Embodiments can detect air in a pumping system. A portion of the system may be isolated from other components located upstream or downstream. The isolated portion may include a chamber, tubing, lines, valves or other components of a pump. In one embodiment, the difference between the starting pressure and an ending pressure taken after a piston has moved a predetermined distance. The pressure difference can be compared with an expected value established for the particular system set up and/or fluid property to detect the presence of air in the system. In some embodiments, a distance between the starting and ending positions of a pump component may be determined after a predetermined pressure difference has been achieved. The distance can be compared with an expected distance to detect the presence of air in the system.
Abstract:
Embodiments of the invention provide a system, method and computer program product for reducing the hold-up volume of a pump. More particularly, embodiments of the invention can determine, prior to dispensing a fluid, a position for a diaphragm in a chamber to reduce a hold-up volume at a dispense pump and/or a feed pump. This variable home position of the diaphragm can be determined based on a set of factors affecting a dispense operation. Example factors may include a dispense volume and an error volume. The home position for the diaphragm can be selected such that the volume of the chamber at the dispense pump and/or feed pump contains sufficient fluid to perform the various steps of a dispense cycle while minimizing the hold-up volume. Additionally, the home position of the diaphragm can be selected to optimize the effective range of positive displacement.
Abstract:
Embodiments of the systems and methods disclosed herein utilize a brushless DC motor (BLDCM) to drive a single-stage or a multi-stage pump in a pumping system for real time, smooth motion, and extremely precise and repeatable position control over fluid movements and dispense amounts, useful in semiconductor manufacturing. The BLDCM may employ a position sensor for real time position feedback to a processor executing a custom field-oriented control scheme. Embodiments of the invention can reduce heat generation without undesirably compromising the precise position control of the dispense pump by increasing and decreasing, via a custom control scheme, the operating frequency of the BLDCM according to the criticality of the underlying function(s). The control scheme can run the BLDCM at very low speeds while maintaining a constant velocity, which enables the pumping system to operate in a wide range of speeds with minimal variation, substantially increasing dispense performance and operation capabilities.
Abstract:
Embodiments disclosed provide a customizable dispense system implementing modular architecture, the customizable dispense system comprising a smart controller configured to operate various pneumatic pumps and motor pumps in various semiconductor manufacturing processes that are sensitive to defects in printed patterns. The smart controller is configured to, upon switching from communicating with a first pump to a second pump, automatically recognize the second pump and apply a control scheme to control the second pump, which may be a motor pump or a pneumatic pump. The switching may be due to physical disconnection of the first pump and physical connection of the second pump or it can be entirely done via software. The smart controller may be connected to track and a variety of devices, including smart filters.