Abstract:
An antenna is provided for the new combined GPS and GLONASS technologies in single port for tracking and navigation applications in wireless devices. The resonant mechanism is excited by an open loop structure at 1.575 GHz and 1.610 GHz, forcing the current distribution to remain at that particular portion of the antenna resulting as the primary resonator.
Abstract:
An antenna is provided for the new combined GPS and GLONASS technologies in single port for tracking and navigation applications in wireless devices. The resonant mechanism is excited by an open loop structure at 1.575 GHz and 1.610 GHz, forcing the current distribution to remain at that particular portion of the antenna resulting as the primary resonator.
Abstract:
A Vivaldi-Monopole antenna is a small form ultra-wideband antenna configured for low frequency operation in modern wireless devices. The Vivaldi-Monopole antenna comprises a tapered-slot element and a monopole element, wherein current modes of each element are combined to yield a functional and small form ultra-wideband antenna configured for low frequency resonances.
Abstract:
Described herein are antenna designs and configurations that provide flexible solutions for creating compact antennas with multiple-band capabilities. For example, a hybrid PIFA-monopole antenna configuration and design is described. As another example, non-planar (e.g., orthogonal) and composite radiating structures incorporating various radiating element and ground plane configurations are described. Connective structures are also described for providing physical rigidity and ground plane connectivity to composite radiation elements. In embodiments described herein of composite radiating structures, multiple antennas may be included through passive radiating elements potentially combined with active circuitry. Composite radiating structures with multiple antennas may be used in multiple-in and multiple-out (MIMO) antenna applications. For example, multiple different antennas within the composite radiating structures may be created using radiating elements on one or more of the vertical and/or horizontal portions of the composite radiating structure.
Abstract:
The instant disclosure provides an antenna system with a generically small ground plane and a generic antenna radiating module, wherein the system further includes a matching circuit and a tunable capacitor each bring integrated with the ground plane and antenna in a novel configuration which provides improved antenna performance across multiple antenna resonances.
Abstract:
A planar monopole antenna for dual-band Wi-Fi application is disclosed. The antenna has a ground copper and a radiation copper. The radiation copper is adhered to a substrate and has an arrowhead-shaped pattern connected to a long-wide pattern. The arrowhead and long-wide patterns are aligned along the longitudinal direction of the antenna. The ground copper is adhered to the substrate and has a rectangularly-shaped pattern with an opening at one end thereof for the reception of the base of the long-wide pattern of the radiation copper in the longitudinal direction. Reception of the radiation copper into the opening of the ground copper forms an U-shaped separation that is approximately 0.6 mm wide. The antenna has a gross span of approximately 45 mm and a width of approximately 7 mm.
Abstract:
A monopole planar inverted-F antenna (PiFA) for dual-band Wi-Fi application is disclosed. The dual band includes a first frequency from 2400-2500 MHz and a second frequency from 4900-6000 MHz. The antenna has a ground copper and a radiation copper. The ground copper is adhered to a substrate having a width of approximately 31 mm and a height of approximately 24 mm. The radiation copper is adhered to the substrate and has a PiFA copper geometry with a width of approximately 31 mm and a height of approximately 6.5 mm. The radiation copper includes a radiation control section that is electrically connected to the ground copper by a short-circuit copper wherein the radiation control section has a length of approximately 15 mm and a width of approximately 0.8 mm.
Abstract:
A multi-angle ultra wide band antenna for electronic devices is disclosed. The said antenna cover all mobile bands worldwide: 700/850/900/1700/1800/1900 and 2100 MHz and with sufficient bandwidth to include the 2400 and 2500 MHz mainly used in wireless networks, having a radiated element supported by a first substrate and expanding into a spatial geometry for transmission and reception of radio signal. An antenna base has a plurality of first solder pads on a second substrate for physical attachment to a printed circuit board and a second solder pad electrically connected to a terminal of said antenna to radio circuitry feed point, with compatible surface mount technology. The first and second substrates are joined by a bending line as a single substrate, where the said first substrate is allowed to be bent relative to the plane of the said second substrate.
Abstract:
A planar dipole antenna for dual-band Wi-Fi application is disclosed. The antenna has a ground copper and a radiation copper. The ground copper is adhered to a substrate and has an upper, shorter and generally horizontal segment and a lower, longer and also generally horizontal segment that are connected at one end thereof by a vertical segment. The radiation copper is adhered to the substrate and has a copper shaped substantially as a mirror symmetry of the ground copper and spaced apart from the ground copper by a gap at the end of the ground and radiation coppers where the shorter and longer horizontal segments thereof are connected. The antenna has a gross span of approximately 42 mm and a height of approximately 7 mm. The gap is approximately 0.6 mm.
Abstract:
A Vivaldi-Monopole antenna is a small form ultra-wideband antenna configured for low frequency operation in modern wireless devices. The Vivaldi-Monopole antenna comprises a tapered-slot element and a monopole element, wherein current modes of each element are combined to yield a functional and small form ultra-wideband antenna configured for low frequency resonances.