Abstract:
A method for preparing a nanometal-polymer composite conductive film includes the steps of (1) mixing a metal oxide with a polymer solution; (2) coating a substrate with a solution resulting from step (1), followed by drying the resultant solution to form a film; (3) performing thermal treatment on the film formed in step (2); and (4) sintering the film thermally treated in step (3). The method dispenses with any reducing agent or dispersing agent but allows nanometallic particles to be formed in situ and thereby reduces surface resistance of the polymer film efficiently.
Abstract:
A pigment is dispersed in a solvent by mixing the pigment nanoparticles with clay in a layered or platelet form and mixing the resultant mixture with the solvent. The method is based on geometric inhomogeneity and mutually exclusive aggregation. The layered or platelet clay having a high aspect ratio is provided to hinder aggregation of the pigment nanoparticles. The pigment nanoparticles can be stably dispersed in a matrix containing an organic solvent and water without aggregation again.
Abstract:
The present invention provides a method for collecting oil with a modified clay. By mixing the modified clay and oil, the oil can be adsorbed to the clay. The modified clay is obtained by intercalating a hydrophobic polymer such as acidified poly(oxyalkylene)-amine into layered silicate clay, mica or talc to enlarge the interlayer space. The modified clay thus becomes hydrophobic and adsorption to the oil is promoted.
Abstract:
A carbon nanotube suspension includes a plurality of carbon nanotubes and a block copolymer dispersant which are evenly distributed in a solvent, wherein the block copolymer includes a hydrophobic block and a functional group block, such that the carbon nanotubes react with the functional group block to form covalent bonds directly without undergoing chemical modification. The carbon nanotube suspension is effective in preparing a superhydrophobic film without undergoing chemical modification or the presence of a fluorine-containing compound. The superhydrophobic film thus prepared is of a tough stable structure and remains superhydrophobic when subjected to lengthy immersion treatment, exposure to a strong acid-base environment, or physical abrasion and polishing.
Abstract:
A method for producing a complex of metallic nanoparticles and inorganic clay and an organic promoter, wherein the organic promoter is ethanolamine, for example, monoethanolamine (MEA), diethanolamine (DEA) or triethanolamine (TEA). The metallic nanoparticles produced by this method can be stably and uniformly dispersed without adding other reducing agent or dispersant.
Abstract:
The present invention discloses an inorganic/organic mixed component (I/O) dispersant and applications thereof, which is primarily applied to dispersing nanoparticles of metal oxides. The I/O dispersant of the present invention can be a composite of inorganic clay and an organic surfactant, a composite of inorganic clay and polyoxyalkylene-amine, or a composite of inorganic clay, polyisobutylene succinic anhydride (PIB-SA) and hydrochloric acid salt or tetraalkyl quaternary salt of polyoxyalkylene-amine, or fatty amines. By mixing with the I/O dispersant of the present invention, nanoparticles of a metal oxide can be uniformly dispersed without aggregation particularly at high solid content. The dispersion has a lower viscosity and is relatively stable in storage even at high temperature.
Abstract:
The present invention discloses a polymeric polyamine which can be produced by polymerizing polyoxyalkylene-amine and a linker. The linker can be anhydride, carboxylic acid, epoxy, isocyanate or poly(styrene-co-maleic anhydride) copolymers (SMA). The present invention also discloses a method for stabilizing the Ag nanoparticles with polymeric polyamine. The polymeric polyamine serving as a stabilizer or dispersant is mixed with a water solution of silver salt and then a reducer is provided to reduce the silver ions and form an organic or a water solution of Ag nanoparticles. Water or solvent of this solution can be further removed through a heating, freezing or decompression process, and thus solid content of the solution can be increased. The concentrated solution also can be diluted to obtain a stable dispersion without aggregation.
Abstract:
Disclosed are processes for synthesizing polyimides by a sequential self-repetitive reaction between poly (aryl carbodiimide) (p-CDI) or aryl diisocyanates with dianhydrides.
Abstract:
The present invention provides a method for reducing metal ions (for example, silver ions) and stably dispersing metal nanoparticles by nanosilicate platelets. An organic dispersant, nanosilicate platelets and a metal ionic solution are mixed to perform a reductive reaction, wherein the organic dispersant is tri-sodium citrate dihydrate (SCD), chitosan or polyvinyl pyrrolidone (PVP), to produce a mixture of stably dispersed metal nanoparticles.
Abstract:
The present invention discloses a method for producing a clay/AMO complex by modifying layered inorganic silicate clay with the intercalating agent AMO (amine-terminated Mannich oligomer). The AMO is prepared by polymerizing polyoxyalkylene amine having molecular weight over 1000, p-cresol and formaldehyde. The present invention also discloses a method for producing nanosilicate plates by extracting the AMO from the above complex with a hydroxide or a chloride of alkali metal or alkaline-earth metal. The extracted AMO can be recycled for reusing.