Abstract:
A system and method for a low-k dielectric layer are provided. A preferred embodiment comprises forming a matrix and forming a porogen within the matrix. The porogen comprises an organic ring structure with fewer than fifteen carbons and a large percentage of single bonds. Additionally, the porogen may have a viscosity greater than 1.3 and a Reynolds numbers less than 0.5.
Abstract:
An integrated circuit structure including reflective metal pads is provided. The integrated circuit structure includes a semiconductor substrate; a first low-k dielectric layer overlying the semiconductor substrate, wherein the first low-k dielectric layer is a top low-k dielectric layer; a second low-k dielectric layer immediately underlying the first low-k dielectric layer; and a reflective metal pad in the second low-k dielectric layer.
Abstract:
A method of lithography patterning includes forming a mask layer on a material layer and forming a capping layer on the mask layer. The capping layer is a boron-containing layer with a higher resistance to an etching reaction of patterning process of the material layer. By adapting the boron-containing layer as the capping layer, the thickness of the mask layer can be thus reduced. Hence, a better gap filling for forming an interconnect metallization in the material layer could be achieved as well.
Abstract:
An extreme low-k (ELK) dielectric film scheme for advanced interconnects includes an upper ELK dielectric layer and a lower ELK dielectric with different refractive indexes. The refractive index of the upper ELK dielectric layer is greater than the refractive index of the lower ELK dielectric layer.
Abstract:
A method for plasma treatment of anisotropically etched openings to improve a crack initiation and propagation resistance including providing a semiconductor wafer having a process surface including anisotropically etched openings extending at least partially through a dielectric insulating layer; plasma treating in at least one plasma treatment the process surface including the anisotropically etched openings to improve an adhesion of a subsequently deposited refractory metal adhesion/barrier layer thereover; and, blanket depositing at least one refractory metal adhesion/barrier layer to line the anisotropically etched openings.
Abstract:
An integrated circuit structure including reflective metal pads is provided. The integrated circuit structure includes a semiconductor substrate; a first low-k dielectric layer overlying the semiconductor substrate, wherein the first low-k dielectric layer is a top low-k dielectric layer; a second low-k dielectric layer immediately underlying the first low-k dielectric layer; and a reflective metal pad in the second low-k dielectric layer.
Abstract:
Interconnect structures are provided. An exemplary embodiment of an interconnect structure comprises a substrate with a low-k dielectric layer thereon. A via opening and a trench opening are formed in the low-k dielectric layer, wherein the trench opening is formed over the via opening and the via opening exposes a portion of the substrate. A liner layer is formed on sidewalls of the low-k dielectric layer exposed by the trench and via protions and a bottom surface exposed by the trench via portion, wherein the portion of the liner layer on sidewalls of the low-k dielectric layer exposed by the trench and via protions and the portion of the liner layer formed on a bottom surface exposed by the trench portion comprise different materials. A conformal conductive barrier layer is formed in the trench and via openings, covering the liner layer and the exposed portion of the substrate. A conductive layer is formed on the conductive barrier layer, filling in the trench and via openings.
Abstract:
An UV treatment for making a low-k dielectric layer having improved properties in a damascene structure. A low-k dielectric layer in a damascene structure is subjected to an UV treatment with He gas or H2 gas to eliminate etching damage to the exposed surfaces of the low-k dielectric layer.
Abstract translation:用于制造具有改进的镶嵌结构性能的低k电介质层的UV处理。 用Ho气体或H 2 O 2气体对镶嵌结构中的低k电介质层进行UV处理,以消除对低k电介质层的暴露表面的蚀刻损伤。
Abstract:
A semiconductor structure having an opening formed in a porous dielectric layer is provided. The exposed pores of the dielectric layer along the sidewalls of the opening are sealed. The sealing may comprise a selective or a non-selective deposition method. The sealing layer has a substantially uniform thickness in one portion of the opening and a non-uniform thickness in another portion of the opening. A damascene interconnect structure having a pore sealing layer is provided as is its method of manufacture.
Abstract:
An active organic electroluminescence display panel module comprising a substrate, a plurality of organic light-emitting devices, a light-emitting device driving unit and a temperature sensor unit are provided. The light-emitting device driving unit is electrically connected to the organic light-emitting devices for driving them. The temperature sensor unit is disposed on the substrate for sensing the temperature of the active organic electroluminescence display panel. The temperature sensor unit is also electrically connected to the light-emitting device driving unit for providing a signal to the light-emitting device driving unit in response to the sensed temperature. Accordingly, the light-emitting device driving unit can adjust the driving voltage of the organic light-emitting devices in the active organic electroluminescence display panel to reduce overall power consumption and provide an accurate grayscale to improve the quality of displayed images.