Abstract:
A system for applying a metal particulate onto an object is disclosed herein. The system can include sources for a metal particulate and a hot pressurized air in communication with a spraying device having a nozzle assembly configured to: receive, mix, and expel the metal particulate and the hot pressurized air. The hot pressurized air can form a venturi effect within the nozzle assembly to draw in the metal particulate. The nozzle assembly can include a nozzle cap with a tapered nozzle having a helical channel, and an outer tip connected to the nozzle cap having a venturi effect chamber, a mixing conduit, and rifling. The helical channel can form a vortex flow of the metal particulate, and the mixing conduit can form a vortex flow of the air metal mixture. A nozzle orifice can expel the air metal mixture to onto the object to form a coating thereon.
Abstract:
A system for applying a metal particulate onto an object is disclosed herein. The system can include sources for a metal particulate and a hot pressurized air in communication with a spraying device having a nozzle assembly configured to: receive, mix, and expel the metal particulate and the hot pressurized air. The hot pressurized air can form a venturi effect within the nozzle assembly to draw in the metal particulate. The nozzle assembly can include a nozzle cap with a tapered nozzle having a helical channel, and an outer tip connected to the nozzle cap having a venturi effect chamber, a mixing conduit, and rifling. The helical channel can form a vortex flow of the metal particulate, and the mixing conduit can form a vortex flow of the air metal mixture. A nozzle orifice can expel the air metal mixture to onto the object to form a coating thereon.