Abstract:
Communication apparatuses and a transmission frame having a downlink subframe are provided. The downlink subframe of the transmission frame may include a downlink coordination zone where a plurality of femto base stations may perform the downlink communication with at least one terminal among a plurality of terminals using a different radio resource, and a downlink shared zone where the plurality of femto base stations may perform the downlink communication with particular terminals among the plurality of terminals using a shared radio resource. The transmission frame may further include an uplink subframe that includes an uplink coordination zone and an uplink shared zone.
Abstract:
A mini base station connectable with the Internet including a frequency recognition unit to recognize a frequency band of an external signal transmitted from a cellular base station; and an operation frequency determination unit to determine an operation frequency band according to interference generated with the cellular base station based on the recognized frequency band of the external signal.
Abstract:
An operation method of a radio communication station is provided. The operation method of a radio communication station, the operation method including: transmitting a basic pilot signal to at least one terminal located in a coverage of a preoccupied system; and transmitting a cognitive radio (CR) pilot signal.
Abstract:
A method for minimizing handoff latencies when a handoff is performed in a wireless network. An access point (AP) or base station associated to a current wireless station (STA) allows information required for a reassociation to the STA to be propagated to handoff-capable neighboring APs or base stations. When the STA moves, a neighboring AP or base station performs the reassociation to the STA on the basis of context. When a handoff procedure is performed, the time taken to receive context of a corresponding STA is reduced, such that a fast handoff can be implemented.
Abstract:
A low density parity code (LDPC) encoding and decoding devices and encoding and decoding methods thereof are provided. An LDPC encoding device includes an information obtaining unit which obtains status information of at least two frequency bands, a matrix generation unit which generates a parity check matrix based on the status information, the parity check matrix including sub matrices which correspond to the at least two frequency bands, and an encoder which generates data bits and parity bits using an LDPC with the generated parity check matrix.
Abstract:
In a system for sharing hybrid resources in an independent network, each one of a plurality of stations preferably employs a sharing authority transferring protocol that allows the network control function to be moved from station to station depending on the network traffic. Although a distributed coordination method is normally used in the network, when an individual station determines that a real-time data stream is intended for the station, an apparatus having a method and data format for the use thereof allows control to be transferred to the targeted station. This allows the targeted station to control the sharing of the wireless hybrid resources using a centralized control method in a direct mode for the duration of the real-time service transmission, thereby optimizing network efficiency. As a result of using the distributed control authority of the present invention, a station may be freely subscribe/withdraw to/from the network.
Abstract:
In a system for sharing hybrid resources in an independent network, each one of a plurality of stations preferably employs a sharing authority transferring protocol that allows the network control function to be moved from station to station depending on the network traffic. Although a distributed coordination method is normally used in the network, when an individual station determines that a real-time data stream is intended for the station, an apparatus having a method and data format for the use thereof allows control to be transferred to the targeted station. This allows the targeted station to control the sharing of the wireless hybrid resources using a centralized control method in a direct mode for the duration of the real-time service transmission, thereby optimizing network efficiency. As a result of using the distributed control authority of the present invention, a station may be freely subscribe/withdraw to/from the network.
Abstract:
A communication method of a macro base station, a macro terminal, a micro base station, and a micro terminal determines an interference control scheme for each interference condition between a micro cell and a micro cell and between a macro cell and a micro cell in a hierarchical cellular network, and controls interference in the hierarchical cellular network where a detailed operation for each determined interference control scheme, a message associated with the detailed operation, and a resource management scheme are defined.
Abstract:
Provided is a method and apparatus for determining a downlink beamforming vector in a hierarchical cell communication system. Small base stations may determine transmit beamforming vectors of the small base stations so that interference from the small base stations may be reduced in a macro terminal. A macro terminal and small terminals may determine receive beamforming vectors based on the transmit beamforming vectors of the small base stations. A macro base station may determine a transmit beamforming vector based on effective channels to terminals using the receive beamforming vectors of the terminals.
Abstract:
A method and apparatus of controlling resources of a femto base station for protecting a macro terminal and controlling interference among femto base stations are provided. The femto base station or a gateway of the femto base station may allocate resource blocks of a femto cell based on a silencing resource block for protecting the macro terminal. Also, the femto base station or the gateway of the femto base station may allocate the resource block of the femto cell based on a relative location between the macro base station and the femto base station and a victim macro terminal. The femto base station or the gateway of the femto base station may allocate the resource block of the femto cell based on a resource block used by a neighboring femto base station.