Abstract:
Microelectronic contactors on a probe contactor substrate, or adhesive elements on a probe contactor or space transformer substrate, are protected by a sacrificial material as 1) the microelectronic contactors or adhesive elements are planarized, or 2) a surface of the substrate on which the microelectronic contactors or adhesive elements are formed is planarized. The adhesive elements are used to bond the probe contactor substrate to the space transformer substrate.
Abstract:
A novel device and method for repairing MEMS systems, including probe cards for use in semiconductor testing is disclosed. In one embodiment, a probe card for use with a diagnostic computer for testing semiconductor wafers comprises a substrate, a plurality of operational probes connected to the substrate, wherein the plurality of operational probes are adapted to make an electrical connection with the diagnostic computer and a plurality of replacement probes connected to the substrate, wherein the plurality of operational probes and the plurality of replacement probes are constructed in substantially the same manufacturing process. Also disclosed is a novel probe card that can be repaired. Specifically, a probe card for use with a diagnostic computer for testing semiconductor wafers, the probe card comprises a substrate and a plurality operational of probes connected to the substrate, wherein the plurality of operational probes are adapted to make an electrical connection with the diagnostic computer, and wherein the plurality of operational probes include a sacrificial material that is activated by applying a voltage.A method for removing a damaged probe from a probe card is also disclosed. The method removes a damaged probe from a probe card that includes a plurality of operational probes connected to a substrate and the plurality of operational probes comprises a sacrificial material that is activated by applying a voltage. The method comprises identifying the damaged probe, applying the voltage to the damaged probe, exposing the damaged probe to an etching solution and removing the damaged probe from the probe card.A second method for repairing a damaged probe from a probe card is also disclosed. The method repairs a damaged probe from a probe card that includes a plurality of operational probes connected to a substrate and a plurality of replacement probes connected to the substrate and wherein the plurality of operational probes and the plurality of replacement probes are constructed in substantially the same manufacturing process. The method comprising the steps of identifying the damaged probe, removing the damaged probe from the probe card, separating one of the plurality of replacement probes from the substrate, and installing the one probe separated from the plurality of replacement probes where the damaged probe was removed. Several refinements to these devices and methods are disclosed.
Abstract:
Disclosed herein is a cost effective, efficient, massively parallel multi-wafer test cell. Additionally, this test cell can be used for both single-touchdown and multiple-touchdown applications. The invention uses a novel “split-cartridge” design, combined with a method for aligning wafers when they are separated from the probe card assembly, to create a cost effective, efficient multi-wafer test cell. A “probe-card stops” design may be used within the cartridge to simplify the overall cartridge design and operation.
Abstract:
The present invention is directed to a probe head having a probe contactor substrate with at least one slot that passes through the probe contactor substrate, at least one probe contactor adapted to test a device under test, with the probe contactor being coupled to the a top side of the probe contactor substrate and electrically connected to a terminal also disposed on top of the probe contactor substrate, and a space transformer having at least one bond pad coupled to a top side of the space transformer, and a bond interconnect which electrically couples the bond pad to the terminal through the slot in the probe contactor substrate.
Abstract:
A probe head for a microelectronic contactor assembly includes a space transformer substrate and a probe contactor substrate. Surface mount technology (SMT) electronic components are positioned close to conductive elements on the probe contactor substrate by placing the SMT electronic components in cavities in the probe contactor substrate, which cavities may be through-hole or non-through-hole cavities. In some cases, the SMT electronic components may be placed on pedestal substrates. SMT electronic components may also be positioned between the probe contactor and space transformer substrates.
Abstract:
The present invention is directed to a probe head having a probe contactor substrate with at least one slot that passes through the probe contactor substrate, at least one probe contactor adapted to test a device under test, with the probe contactor being coupled to the a top side of the probe contactor substrate and electrically connected to a terminal also disposed on top of the probe contactor substrate, and a space transformer having at least one bond pad coupled to a top side of the space transformer, and a bond interconnect which electrically couples the bond pad to the terminal through the slot in the probe contactor substrate.
Abstract:
Disclosed herein is a cost effective, efficient, massively parallel multi-wafer test cell. Additionally, this test cell can be used for both single-touchdown and multiple-touchdown applications. The invention uses a novel “split-cartridge” design, combined with a method for aligning wafers when they are separated from the probe card assembly, to create a cost effective, efficient multi-wafer test cell. A “probe-card stops” design may be used within the cartridge to simplify the overall cartridge design and operation.
Abstract:
A plurality of inserts are anchored in holes or recesses in a probe head. Shafts are coupled to the inserts, and adjustable multi-part fasteners are attached to the shafts and to a stiffener. The multi-part fasteners are operated to move the shafts and couple the probe head, the stiffener, and other components of a microelectronic contactor assembly. In some embodiments, the inserts may be anchored in the probe head using an adhesive. In some embodiments, the probe head may comprise more than one major substrate, and the inserts may be anchored in either of the substrates.
Abstract:
Microelectronic contactors on a probe contactor substrate, or adhesive elements on a probe contactor or space transformer substrate, are protected by a sacrificial material as 1) the microelectronic contactors or adhesive elements are planarized, or 2) a surface of the substrate on which the microelectronic contactors or adhesive elements are formed is planarized. The adhesive elements are used to bond the probe contactor substrate to the space transformer substrate.
Abstract:
A probe head for a microelectronic contactor assembly includes a space transformer substrate and a probe contactor substrate. Surface mount technology (SMT) electronic components are positioned close to conductive elements on the probe contactor substrate by placing the SMT electronic components in cavities in the probe contactor substrate, which cavities may be through-hole or non-through-hole cavities. In some cases, the SMT electronic components may be placed on pedestal substrates. SMT electronic components may also be positioned between the probe contactor and space transformer substrates.