Abstract:
A contact device is provided, the device having at least a first contact region for electrical connection to an electric line and at least a second contact region for electrical connection to a flexible printed circuit board other contact medium which may damaged by repeated soldering. The first contact region and the second contact region are electrically connected. Between the first contact region and the second contact region, a third region is provided which has a lower thermal conductivity per unit length than the first contact region and/or the second contact region.
Abstract:
A contact device is provided, the device having at least a first contact region for electrical connection to an electric line and at least a second contact region for electrical connection to a flexible printed circuit board other contact medium which may damaged by repeated soldering. The first contact region and the second contact region are electrically connected. Between the first contact region and the second contact region, a third region is provided which has a lower thermal conductivity per unit length than the first contact region and/or the second contact region.
Abstract:
An electromagnetically operated proportional valve, in particular a pressure regulating valve for automatic transmission of motor vehicles has a magnet housing, a magnet coil and stationary flux guiding elements received in the magnet housing, a magnet armature, a valve member with which the magnet armature cooperates, stationary structural elements forming at least one auxiliary air gap and a working air gap in a magnetic circuit, the valve member cooperating with the stationary structural elements through the at least one auxiliary air gap and the at least one working air gap, at least one of the structural elements cooperating in the working air gap being at least partially provided on at least one surface facing a corresponding another structural element with at least one nonmagnetic coating.
Abstract:
An electromagnetic valve, in particular switching or pressure regulating valve for an automatic transmission of motor vehicles has a magnet housing, a magnet coil with a coil body received in the magnet housing, a valve member, a magnet armature through which the magnet coil cooperates with the valve member, a valve closing part connected with the magnet housing, electrical contacts for controlling the magnet coils and arranged outside of the magnet housing, and conductors extending through the magnet housing and connecting the electrical contacts with the magnet coil. The magnet housing is composed of at least two magnet casing elements, including a first magnet casing element and also a second magnet casing element which at least partially overlaps the first magnet casing element, at least one of the magnet casing elements having a recess through which the conductors extend to the electrical contacts.
Abstract:
A module, particularly an electronic module of a commercial vehicle, includes at least one plug connection, having a plug element and a mating plug element, by which an electrical connection can be established when plugged together. At least one of the plug elements is mounted floatingly or movably within a clearance. A method for assembling the module plugs together the plug elements, at least one of the plug elements moving within a clearance relative to the mounting thereof.
Abstract:
A hydraulic or pneumatic control device for an automated shift transmission including actuating devices with actuating cylinders (15, 16) having pressure spaces (19a, 19b; 20a, 20b). The pressure spaces (19a, 19b; 20a, 20b) of the actuating cylinders (15, 16) can be connected by a respective control valve (22a, 22b; 32a, 32b) to a pressure line (26), which can be selectively connected to or cut off from a main pressure line (8) by a main shut-off valve (45a). At least one additional main shut-off valve (45b) is arranged in parallel with the first main shut-off valve (45a) between the main pressure line (8) and the pressure line (26) to improve the control characteristics and increase the operational reliability.
Abstract:
A device serves the purpose of sealing a rotating shaft for use under water. It exhibits face seals which seal a work area against the water. In accordance with the invention the face seals are constructed in the form of three slide ring pairs, wherein between the three slide ring pairs two areas (18, 21) are arranged. One of the areas is a sealing area adjacent to the water filled with a first medium and the other area is a leaking area adjacent to the work area. In the sealing area the first medium is held at a pressure level which is higher than the pressure of the adjacent water.
Abstract:
An electromagnetic valve is provided with at least one coil containing at least one coil former. The coil former is provided with at least two separate wire windings, of which, in each case, two are connected in series or in parallel with one another.
Abstract:
A method for is provided actuating at least one electromagnetic valve containing at least one coil, which can be excited by an excitation current, and an armature, in which the excitation current can be set such that, in response to a signal for actuating the armature from one position into another position, it causes the actuator to move as a result of an excitation current threshold being exceeded, and is kept at a value which is lower by comparison in order to hold the armature in a specific position. The excitation current, which is greater than zero but below the excitation current threshold, is applied at least temporarily to the electromagnetic valve even if no signal for actuating or for holding the armature is present.
Abstract:
A method for is provided actuating at least one electromagnetic valve containing at least one coil, which can be excited by an excitation current, and an armature, in which the excitation current can be set such that, in response to a signal for actuating the armature from one position into another position, it causes the actuator to move as a result of an excitation current threshold being exceeded, and is kept at a value which is lower by comparison in order to hold the armature in a specific position. The excitation current, which is greater than zero but below the excitation current threshold, is applied at least temporarily to the electromagnetic valve even if no signal for actuating or for holding the armature is present.