Abstract:
Processes for the catalytic dechlorination of one or more hydrocarbon products involve contacting a mixture comprising the hydrocarbon product(s) and a carrier gas with a dechlorination catalyst under catalytic dechlorination conditions to provide a dechlorinated hydrocarbon product, HCl, and the carrier gas. The dechlorinated hydrocarbon product may be separated from the HCl and the carrier gas to provide liquid fuel or lubricating base oil.
Abstract:
A method for reducing halide concentration in a hydrocarbon product having an organic halide content from 50 to 4000 ppm which is made by a hydrocarbon conversion process selected from the group consisting of polymerization, dimerization, oligomerization, acetylation, metatheses, copolymerization, isomerization, olefin hydrogenation, hydroformylation, and combinations thereof, using an ionic liquid catalyst comprising a halogen-containing acidic ionic liquid, comprising contacting at least a portion of the hydrocarbon product with at least one molecular sieve having a pore size from 4 to 16 Angstrom under organic halide absorption conditions, wherein the organic halide is absorbed during the contacting, to reduce the halogen concentration in the hydrocarbon product to less than 40 ppm.
Abstract:
A process for alkylating an aromatic compound containing no hydroxyl groups comprising reacting at least one non-hydroxyl containing aromatic compound with at least one olefinic oligomer in the presence of an acidic ionic liquid catalyst, wherein the olefinic oligomer has a carbon range of from about C12 to about C70 and is synthesized by oligomerizing at least one monoolefin monomer in the presence of an acidic ionic liquid catalyst.
Abstract:
A process and method for making a superior lubricant or distillate fuel component by the oligomerization of a mixture comprising olefins to form an oligomer and the alkylation of the oligomer with isoparaffins to produce an alkylated (“capped”) olefin oligomer preferably using an acidic chloroaluminate ionic liquid catalyst system. Preferably the ionic liquid catalyst system comprises a Brönsted acid.
Abstract:
A process and method for separating CO2 from a gaseous stream such as natural gas. An ionic liquid comprising an anion having a carboxylate function is used as an adsorbent to selectively complex the CO2 yielding a gaseous stream with a greatly reduced CO2 content. The ionic liquid can then be readily be regenerated and recycled.
Abstract:
A process for preparing very high viscosity polyalphaolefins using an acidic ionic liquid oligomerization catalyst in the absence of an organic diluent and the products formed thereby. A method of continuously manufacturing a high viscosity polyalphaolefin product by introducing a monomer and an ionic liquid catalyst together into a reaction zone while simultaneously withdrawing from the reaction zone a reaction zone effluent that contains the high viscosity polyalphaolefin. The reaction zone is operated under reaction conditions suitable for producing the high viscosity polyalphaolefin product. The preferred high viscosity polyalphaolefin has a kinematic viscosity exceeding 8 cSt and is the reaction product of the trimerization, oligomerization, or polymerization of an alpha olefin or a mixture of one or more product thereof. The high viscosity polyalphaolefins are useful as lubricants or lubricant additives.
Abstract:
A method for producing polymerisable solution which comprises dissolving an ethylenically unsaturated zwitterionic monomer in a co-monomer system comprising a functionalised ethylenically unsaturated monomer in which the zwitterionic monomer is soluble, a siloxane group-containing monomer or macromer, and a crosslinking agent is disclosed. The polymerisable solution is biocompatible and can be used to produce polymers and articles such as contact lenses.
Abstract:
In some embodiments, the present invention relates to an enrichment process that involves a separation and/or fractionation and/or enrichment of monounsaturated fatty acid/ester molecules from polyunsaturated fatty acid/ester molecules or, correspondingly, monounsaturated molecules from saturated molecules. Such processes are at least partially based on π(pi)-complexation between metal ions and unsaturated bonds of the extractible molecules (fatty acids/esters), wherein a greater degree of unsaturation provides for greater coordinating (bond) strength and corresponding selectivity in the associated π-complexation with metal ions.
Abstract:
A process and method for separating CO2 from a gaseous stream such as natural gas. An ionic liquid comprising an anion having a carboxylate function and an effective amount of water is used as an adsorbent to selectively complex the CO2 yielding a gaseous stream with a greatly reduced CO2 content. The ionic liquid can then be readily be regenerated and recycled.
Abstract:
Polymerisable material which comprises a polymerisable group, a siloxane group-containing component and a zwitterionic group is described. The polymerisable material may be used to produce polymers and articles, in particular contact lenses.